23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The CXCL2/IL8/CXCR2 Pathway Is Relevant for Brain Tumor Malignancy and Endothelial Cell Function

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We aimed to evaluate the angiogenic capacity of CXCL2 and IL8 affecting human endothelial cells to clarify their potential role in glioblastoma (GBM) angiogenesis. Human GBM samples and controls were stained for proangiogenic factors. Survival curves and molecule correlations were obtained from the TCGA (The Cancer Genome Atlas) database. Moreover, proliferative, migratory and angiogenic activity of peripheral (HUVEC) and brain specific (HBMEC) primary human endothelial cells were investigated including blockage of CXCR2 signaling with SB225502. Gene expression analyses of angiogenic molecules from endothelial cells were performed. Overexpression of VEGF and CXCL2 was observed in GBM patients and associated with a survival disadvantage. Molecules of the VEGF pathway correlated but no relation for CXCR1/2 and CXCL2/IL8 was found. Interestingly, receptors of endothelial cells were not induced by addition of proangiogenic factors in vitro. Proliferation and migration of HUVEC were increased by VEGF, CXCL2 as well as IL8. Their sprouting was enhanced through VEGF and CXCL2, while IL8 showed no effect. In contrast, brain endothelial cells reacted to all proangiogenic molecules. Additionally, treatment with a CXCR2 antagonist led to reduced chemokinesis and sprouting of endothelial cells. We demonstrate the impact of CXCR2 signaling on endothelial cells supporting an impact of this pathway in angiogenesis of glioblastoma.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

            The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
              • Record: found
              • Abstract: found
              • Article: not found

              The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.

              The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications. © 2012 AACR.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                05 March 2021
                March 2021
                : 22
                : 5
                : 2634
                Affiliations
                [1 ]Department of Experimental Neurosurgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; ruth-maria.urbantat@ 123456charite.de (R.M.U.); anne.blank@ 123456charite.de (A.B.); irina.kremenetskaia@ 123456charite.de (I.K.); gueliz.acker@ 123456charite.de (G.A.); susan.brandenburg@ 123456charite.de (S.B.)
                [2 ]Department of Neurosurgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
                [3 ]Berlin Institute of Health, 10178 Berlin, Germany
                Author notes
                [* ]Correspondence: peter.vajkoczy@ 123456charite.de ; Tel.: +49-30-450-560001
                [†]

                Present address: Department of Anesthesiology and Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany.

                [‡]

                These authors contributed equally to this work.

                [§]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-7704-0129
                Article
                ijms-22-02634
                10.3390/ijms22052634
                7961945
                33807899
                a6fdff88-260d-4ee0-97ec-62bfa1edf543
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 February 2021
                : 02 March 2021
                Categories
                Article

                Molecular biology
                tumor angiogenesis,chemokines,glioblastoma,sb225002,hbmec
                Molecular biology
                tumor angiogenesis, chemokines, glioblastoma, sb225002, hbmec

                Comments

                Comment on this article

                Related Documents Log