29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis.

          Results

          Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system.

          Conclusions

          B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Melioidosis.

          N. White (2003)
          Melioidosis, which is infection with the gram-negative bacterium Burkholderia pseudomallei, is an important cause of sepsis in east Asia and northern Australia. In northeastern Thailand, melioidosis accounts for 20% of all community-acquired septicaemias, and causes death in 40% of treated patients. B pseudomallei is an environmental saprophyte found in wet soils. It mostly infects adults with an underlying predisposing condition, mainly diabetes mellitus. Melioidosis is characterised by formation of abscesses, especially in the lungs, liver, spleen, skeletal muscle, and prostate. In a third of paediatric cases in southeast Asia, the disease presents as parotid abscess. In northern Australia, 4% of patients present with brain stem encephalitis. Ceftazidime is the treatment of choice for severe melioidosis, but response to high dose parenteral treatment is slow (median time to abatement of fever 9 days). Maintenance antibiotic treatment is with a four-drug regimen of chloramphenicol, doxycycline, and trimethoprim-sulfamethoxazole, or with amoxicillin-clavulanate in children and pregnant women. However, even with 20 weeks' antibiotic treatment, 10% of patients relapse. With improvements in health care and diagnostic microbiology in endemic areas of Asia, and increased travel, melioidosis will probably be recognised increasingly during the next decade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Intensity of Rainfall and Severity of Melioidosis, Australia

            In a 12-year prospective study of 318 culture-confirmed cases of melioidosis from the Top End of the Northern Territory of Australia, rainfall data for individual patient locations were correlated with patient risk factors, clinical parameters, and outcomes. Median rainfall in the 14 days before admission was highest for those dying with melioidosis (211 mm), in comparison to 110 mm for those surviving (p = 0.0002). Median 14-day rainfall was also significantly higher for those admitted with pneumonia. On univariate analysis, a prior 14-day rainfall of ≥125 mm was significantly correlated with pneumonia (odds ratio [OR] 1.70 [confidence interval [CI] 1.09 to 2.65]), bacteremia (OR 1.93 [CI 1.24 to 3.02]), septic shock (OR 1.94 [CI 1.14 to 3.29]), and death (OR 2.50 [CI 1.36 to 4.57]). On multivariate analysis, rainfall in the 14 days before admission was an independent risk factor for pneumonia (p = 0.023), bacteremic pneumonia (p = 0.001), septic shock (p = 0.005), and death (p < 0.0001). Heavy monsoonal rains and winds may cause a shift towards inhalation of Burkholderia pseudomallei.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov.

              We performed an integrated genotypic and phenotypic analysis of 128 strains of the genera Burkholderia, Ralstonia, and Pseudomonas in order to study the taxonomic structure of Burkholderia cepacia and its relationships with other Burkholderia species. Our data show that presumed B. cepacia strains isolated from cystic fibrosis patients belong to at least five distinct genomic species, one of which was identified as Burkholderia vietnamiensis. This group of five phenotypically similar species is referred to as the B. cepacia complex. The name Burkholderia multivorans is proposed for one of these genomic species, which was formerly referred to as B. cepacia genomovar II; the remaining B. cepacia groups are referred to as genomovars I, III, and IV, pending additional differential phenotypic tests. The role and pathogenic potential of each of these taxa, particularly in view of the potentially fatal infections in cystic fibrosis patients, need further evaluation. The data presented also demonstrate that Pseudomonas glathei and Pseudomonas pyrrocinia should be reclassified as Burkholderia species.
                Bookmark

                Author and article information

                Journal
                BMC Microbiol
                BMC Microbiology
                BioMed Central
                1471-2180
                2010
                14 June 2010
                : 10
                : 171
                Affiliations
                [1 ]Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
                [2 ]Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
                [3 ]Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
                Article
                1471-2180-10-171
                10.1186/1471-2180-10-171
                2896371
                20540813
                a70bf683-1041-4a7d-8d1f-52c746994687
                Copyright ©2010 Pumirat et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 August 2009
                : 14 June 2010
                Categories
                Research article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article