0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Immunohistochemical analysis of the expression of E-cadherin and ZEB1 in non-small cell lung cancer : E-cadherin/ZEB1 expression of lung tumor

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer.

          The development of metastases is the main reason for cancer-related death in non-small cell lung cancer (NSCLC). The initiation of metastasis involves an increase in cell motility mediated by the loss of cell-cell adhesion caused by E-cadherin repression, in a process commonly known as epithelial-to-mesenchymal transition. A role for microRNA-200 family members in regulating epithelial-to-mesenchymal transition has recently been indicated but data about their expression in lung tumors is still unavailable. The present study investigated the expression of miR-200c in a panel of NSCLC cell lines (n = 9), and a strong inverse correlation with invasion was detected. Reintroduction of miR-200c into highly invasive/aggressive NSCLC cells induced a loss of the mesenchymal phenotype by restoring E-cadherin and reducing N-cadherin expression, and inhibited in vitro cell invasion as well as in vivo metastasis formation. Moreover, miR-200c overexpression restored the sensitivity of NCI-H1299 cells to cisplatin and cetuximab. Hypermethylation of the promoter region was found to be responsible for the loss of miR-200c in invasive cells, as evaluated by 5-aza-2'-deoxycytidine treatment, methylation-specific PCR, and bisulfite sequencing. In primary tumor specimens obtained from 69 patients with consecutively resected NSCLC, lower miR-200c expression levels were found to be associated with a poor grade of differentiation (P = 0.04), a higher propensity to lymph node metastases (P < 0.01), and with a lower E-cadherin expression (P = 0.01). These data indicate that the loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype, and that assessment of its expression could contribute to a better clinicopathologic definition of patients with NSCLC. © 2010 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition.

            The transcription factors Snail, Slug, and bHLH E47 have been recently described as direct repressors of E-cadherin and inducers of epithelial-mesenchymal transition (EMT) and invasion when overexpressed in epithelial cells. Although a role of those factors in tumor progression and invasion has been proposed, whether the different repressors play distinct or redundant roles in the tumorigenic process has not been established. To further investigate this important issue, we have analyzed the gene expression profiling of Madin-Darby canine kidney (MDCK) epithelial cells expressing the different repressors (MDCK-Snail, MDCK-Slug, and MDCK-E47 cells) versus control MDCK cells by cDNA microarrays. A total of 243 clones (228 genes and 15 expressed sequence tags) were found to be differentially expressed between either of the three MDCK-derived cell lines and control MDCK cells. Twenty two of the candidate genes were validated by Northern blot, Western blot, immunofluorescence, and promoter analyses in cell lines and by immunohistochemistry in xenografted tumors. Gene clustering analysis indicated that about a third of the 243 candidate genes were common to MDCK cells expressing Snail, Slug, or E47 factors, whereas the rest of the genes were regulated in only one or two cell types. Differentially regulated genes include those related to EMT (45 genes), transcriptional regulation (18 genes), cell proliferation and signaling (54 genes), apoptosis (12 genes), and angiogenesis (9 genes). These results indicate that Snail, Slug, and E47 transcription factors induce common and specific genetic programs, supporting a differential role of the factors in tumor progression and invasion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ZEB1-responsive genes in non-small cell lung cancer.

              The epithelial to mesenchymal transition (EMT) is a developmental process enabling epithelial cells to gain a migratory mesenchymal phenotype. In cancer, this process contributes to metastases; however the regulatory signals and mechanistic details are not fully elucidated. Here, we sought to identify the subset of genes regulated in lung cancer by ZEB1, an E-box transcriptional repressor known to induce EMT. Using an Affymetrix-based expression database of 38 non-small cell lung cancer (NSCLC) cell lines, we identified 324 genes that correlated negatively with ZEB1 and 142 that were positively correlated. A mesenchymal gene pattern (low E-cadherin, high Vimentin or N-cadherin) was significantly associated with ZEB1 and ZEB2, but not with Snail, Slug, Twist1 or Twist2. Among eight genes selected for validation, seven were confirmed to correlate with ZEB1 by quantitative real-time RT-PCR in a series of 22 NSCLC cell lines, either negatively (CDS1, EpCAM, ESRP1, ESRP2, ST14) or positively (FGFR1, Vimentin). In addition, over-expression or knockdown of ZEB1 led to corresponding changes in gene expression, demonstrating that these genes are also regulated by ZEB1, either directly or indirectly. Of note, the combined knockdown of ZEB1 and ZEB2 led to apparent synergistic responses in gene expression. Furthermore, these responses were not restricted to artificial settings, since most genes were similarly regulated during a physiologic induction of EMT by TGF-β plus EGF. Finally, the absence of ST14 (matriptase) was linked to ZEB1 positivity in lung cancer tissue microarrays, implying that the regulation observed in vitro applies to the human disease. In summary, this study identifies a new set of ZEB-regulated genes in human lung cancer cells and supports the hypothesis that ZEB1 and ZEB2 are key regulators of the EMT process in this disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Pathology International
                Pathol Int
                Wiley-Blackwell
                13205463
                November 2014
                November 27 2014
                : 64
                : 11
                : 560-568
                Article
                10.1111/pin.12214
                25347933
                a70fff5d-a1c0-4935-8d3a-c9a7f5861591
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article