Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stable Magnetic Droplet Solitons in Spin Transfer Nanocontacts

      Preprint

      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnetic thin films with perpendicular magnetic anisotropy (PMA) have localized excitations that correspond to reversed dynamically precessing magnetic moments, known as magnetic droplet solitons. Fundamentally, these excitations are associated with an attractive interaction between elementary spin-excitations (i.e., magnons) and were predicted to occur in PMA materials in the absence of damping [1,2]. While damping, present in all magnetic materials, suppresses these excitations, it is now possible to compensate damping by spin transfer torques through electrical current flow in nanometer scale contacts to ferromagnetic thin films [3,4]. A theory predicts the appearance of magnetic droplet solitons at a threshold current in nanocontacts [5] and, recently, experimental signatures of droplet nucleation have been reported [6]. However, thus far, they have been observed to be nearly reversible excitations, with only partially reversed magnetization and to be subject to instabilities that cause them to drift away from the nanocontacts (i.e., drift instabilities) [6]. Here we show that magnetic droplet solitons can be stabilized in a spin transfer nanocontact. Further, they exhibit a strong hysteretic response to fields and currents and a nearly fully reversed magnetization in the contact. These observations, in addition to their fundamental interest, open up new applications for magnetic droplet solitons as multi-state high frequency current and field tunable oscillators.

          Related collections

          Most cited references 3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Microwave Oscillations of a Nanomagnet Driven by a Spin-Polarized Current

          We describe direct electrical measurements of microwave-frequency dynamics in individual nanomagnets that are driven by spin transfer from a DC spin-polarized current. We map out the dynamical stability diagram as a function of current and magnetic field, and we show that spin transfer can produce several different types of magnetic excitations, including small-angle precession, a more complicated large-angle motion, and a high-current state that generates little microwave signal. The large-angle mode can produce a significant emission of microwave energy, as large as 40 times the Johnson-noise background.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Excitation of spin waves by an electric current

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spin torque-generated magnetic droplet solitons.

              Dissipative solitons have been reported in a wide range of nonlinear systems, but the observation of their magnetic analog has been experimentally challenging. Using spin transfer torque underneath a nanocontact on a magnetic thin film with perpendicular magnetic anisotropy (PMA), we have observed the generation of dissipative magnetic droplet solitons and report on their rich dynamical properties. Micromagnetic simulations identify a wide range of automodulation frequencies, including droplet oscillatory motion, droplet "spinning," and droplet "breather" states. The droplet can be controlled by using both current and magnetic fields and is expected to have applications in spintronics, magnonics, and PMA-based domain-wall devices.
                Bookmark

                Author and article information

                Journal
                2014-08-08
                Article
                10.1038/nnano.2014.255
                1408.1902

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                Nature Nanotechnology 9, 992 (2014)
                cond-mat.mtrl-sci cond-mat.mes-hall

                Condensed matter, Nanophysics

                Comments

                Comment on this article