34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of proteomics to identify the target molecules involved in Lonicera japonica-induced photokilling in human lung cancer CH27 cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Lonicera japonica has been used as natural and healthy drink for its anti-inflammatory effect and pleasant odor in China and Taiwan.

          Methods

          2D electrophoresis was used to analyze the proteins involved in photoactivated Lonicera japonica-induced CH27 cell apoptosis. The fluorescent dyes MitoTracker Red CMXRos, calcein AM and JC-1 were used to elucidate mitochondrial function. The protein expression was performed by Western blotting. Fluorescent image of endoplasmic reticulum was accomplished by using ER-Tracker Green. This study used fluorescent dye CM-H 2DCFDA to detect intracellular generation of reactive oxygen species.

          Results

          The identified proteins can be classified into three major groups, which include proteins involved in mitochondrial function, cytoskeleton-related proteins and proteins associated with endoplasmic reticulum (ER) stress. Photoactivated Lonicera japonica caused a significant effect on the mitochondrial function and ER stress in CH27 cells. The reactive oxygen species producing was found to be involved in photoactivated Lonicera japonica-induced CH27 cell apoptosis.

          Conclusion

          Mitochondria and endoplasmic reticulum are the integral targets in photoactivated Lonicera japonica-induced CH27 cell apoptosis. We also demonstrated that ethyl acetate fraction of Lonicera japonica extracts caused photocytotoxicity in a dose-dependent manner in CH27 cells. This could explain the fact that the ethyl acetate fraction of Lonicera japonica extracts may contain compounds which exhibit the photosensitizing activity in CH27 cells.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The mitochondrial permeability transition pore and its role in cell death.

          M Crompton (1999)
          This article reviews the involvement of the mitochondrial permeability transition pore in necrotic and apoptotic cell death. The pore is formed from a complex of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocase and cyclophilin-D (CyP-D) at contact sites between the mitochondrial outer and inner membranes. In vitro, under pseudopathological conditions of oxidative stress, relatively high Ca2+ and low ATP, the complex flickers into an open-pore state allowing free diffusion of low-Mr solutes across the inner membrane. These conditions correspond to those that unfold during tissue ischaemia and reperfusion, suggesting that pore opening may be an important factor in the pathogenesis of necrotic cell death following ischaemia/reperfusion. Evidence that the pore does open during ischaemia/reperfusion is discussed. There are also strong indications that the VDAC-adenine nucleotide translocase-CyP-D complex can recruit a number of other proteins, including Bax, and that the complex is utilized in some capacity during apoptosis. The apoptotic pathway is amplified by the release of apoptogenic proteins from the mitochondrial intermembrane space, including cytochrome c, apoptosis-inducing factor and some procaspases. Current evidence that the pore complex is involved in outer-membrane rupture and release of these proteins during programmed cell death is reviewed, along with indications that transient pore opening may provoke 'accidental' apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome.

            The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ER stress and neurodegenerative diseases.

              Endoplasmic reticulum (ER) stress is caused by disturbances in the structure and function of the ER with the accumulation of misfolded proteins and alterations in the calcium homeostasis. The ER response is characterized by changes in specific proteins, causing translational attenuation, induction of ER chaperones and degradation of misfolded proteins. In case of prolonged or aggravated ER stress, cellular signals leading to cell death are activated. ER stress has been suggested to be involved in some human neuronal diseases, such as Parkinson's disease, Alzheimer's and prion disease, as well as other disorders. The exact contributions to and casual effects of ER stress in the various disease processes, however, are not known. Here we will discuss the possible role of ER stress in neurodegenerative diseases, and highlight current knowledge in this field that may reveal novel insight into disease mechanisms and help to design better therapies for these disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2013
                1 October 2013
                : 13
                : 244
                Affiliations
                [1 ]School of Pharmacy, China Medical University, Taichung, Taiwan
                [2 ]School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
                Article
                1472-6882-13-244
                10.1186/1472-6882-13-244
                3850744
                24083475
                a7217275-c141-4ed2-81a3-b6180f705d5b
                Copyright © 2013 Liao et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 July 2013
                : 26 September 2013
                Categories
                Research Article

                Complementary & Alternative medicine
                lonicera japonica,human lung squamous carcinoma ch27 cells,photocytotoxicity,2d electrophoresis,mitochondrial chaperones,endoplasmic reticulum chaperones

                Comments

                Comment on this article