20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing.

          DOI: http://dx.doi.org/10.7554/eLife.07090.001

          eLife digest

          The individual cells in a developing animal embryo organize themselves into tissues with specific and reproducible shapes, which requires the cells to communicate with one another. Cells in tissues exert forces on their neighbors, and respond to being pushed and pulled by the cells around them.

          In the fruit fly Drosophila melanogaster, each wing consists mainly of a framework of proteins and other molecules that is built by epithelial cells. These epithelial cells divide and grow during the life of a fly larva, and then reorganize themselves into the shape of the wing after it forms into a pupa. During this reshaping, epithelial cells in some regions of the wing experience powerful contractions. Previous work had suggested that and these forces produced tension in the rest of the wing to pull it into its final elongated shape. But it wasn't clear what exactly these contractions were pulling against to produce the tension. Nor was it understood exactly how wing epithelial cells responded to tension to reorganize themselves into a different wing shape.

          Now, Etournay, Popović, Merkel, Nandi et al. have analyzed the forces acting across the entire wing blade and how these forces shape the wing. All cell divisions, cell neighbor exchanges and changes in cell shape in the developing wing blade were tracked under a microscope; this revealed how each one of them contributed to the change in wing shape. Further experiments revealed that localized contractile forces produce tension in the wing because it is connected around its edge to surrounding structures via an extracellular protein called Dumpy. Releasing these contacts, by severing them with a laser or by mutating Dumpy, caused the wing to develop into abnormal shapes, showing that the tension in the wing blade has an important role in determining wing shape. Furthermore, by tracking cells in wings that had been severed by a laser, or mutated for Dumpy Etournay, Popović, Merkel, Nandi et al. could figure out exactly which cellular processes were guided by epithelial tension.

          Etournay Popović, Merkel, Nandi et al. also present a theoretical model that describes how the interplay between active force generation and the response of cells to the resulting tension shapes the wings of fruit flies. They propose that epithelial tension provides a mechanism through which cells can communicate with each other to ensure that together the combined behavior of these cells generates reproducible shapes. Further studies are required to analyze how active force generation is patterned and cells sense and respond to external forces during development.

          DOI: http://dx.doi.org/10.7554/eLife.07090.002

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The NumPy array: a structure for efficient numerical computation

          In the Python world, NumPy arrays are the standard representation for numerical data. Here, we show how these arrays enable efficient implementation of numerical computations in a high-level language. Overall, three techniques are applied to improve performance: vectorizing calculations, avoiding copying data in memory, and minimizing operation counts. We first present the NumPy array structure, then show how to use it for efficient computation, and finally how to share array data with other libraries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila.

            Planar cell polarity (PCP) proteins form polarized cortical domains that govern polarity of external structures such as hairs and cilia in both vertebrate and invertebrate epithelia. The mechanisms that globally orient planar polarity are not understood, and are investigated here in the Drosophila wing using a combination of experiment and theory. Planar polarity arises during growth and PCP domains are initially oriented toward the well-characterized organizer regions that control growth and patterning. At pupal stages, the wing hinge contracts, subjecting wing-blade epithelial cells to anisotropic tension in the proximal-distal axis. This results in precise patterns of oriented cell elongation, cell rearrangement and cell division that elongate the blade proximo-distally and realign planar polarity with the proximal-distal axis. Mutation of the atypical Cadherin Dachsous perturbs the global polarity pattern by altering epithelial dynamics. This mechanism utilizes the cellular movements that sculpt tissues to align planar polarity with tissue shape. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Planar polarized actomyosin contractile flows control epithelial junction remodelling.

              Force generation by Myosin-II motors on actin filaments drives cell and tissue morphogenesis. In epithelia, contractile forces are resisted at apical junctions by adhesive forces dependent on E-cadherin, which also transmits tension. During Drosophila embryonic germband extension, tissue elongation is driven by cell intercalation, which requires an irreversible and planar polarized remodelling of epithelial cell junctions. We investigate how cell deformations emerge from the interplay between force generation and cortical force transmission during this remodelling in Drosophila melanogaster. The shrinkage of dorsal-ventral-oriented ('vertical') junctions during this process is known to require planar polarized junctional contractility by Myosin II (refs 4, 5, 7, 12). Here we show that this shrinkage is not produced by junctional Myosin II itself, but by the polarized flow of medial actomyosin pulses towards 'vertical' junctions. This anisotropic flow is oriented by the planar polarized distribution of E-cadherin complexes, in that medial Myosin II flows towards 'vertical' junctions, which have relatively less E-cadherin than transverse junctions. Our evidence suggests that the medial flow pattern reflects equilibrium properties of force transmission and coupling to E-cadherin by α-Catenin. Thus, epithelial morphogenesis is not properly reflected by Myosin II steady state distribution but by polarized contractile actomyosin flows that emerge from interactions between E-cadherin and actomyosin networks.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                2050-084X
                23 June 2015
                2015
                : 4
                : e07090
                Affiliations
                [1 ]Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
                [2 ]Max Planck Institute for the Physics of Complex Systems , Dresden, Germany
                [3 ]Institut de Biologie du Développement de Marseille , Marseille, France
                [4 ]deptLincoln's Inn Fields Laboratories , The Francis Crick Institute , London, United Kingdom
                The Samuel Lunenfeld Research Institute , Canada
                The Samuel Lunenfeld Research Institute , Canada
                Author notes
                [* ]For correspondence: salbreux@ 123456pks.mpg.de (GS);
                [†]

                These authors contributed equally to this work.

                Article
                07090
                10.7554/eLife.07090
                4574473
                26102528
                a72a6788-c087-4f5c-9f0d-f742c014248a
                © 2015, Etournay et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 24 February 2015
                : 18 June 2015
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004189, Max-Planck-Gesellschaft;
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000781, European Research Council (ERC);
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100004963, Seventh Framework Programme;
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100002347, Bundesministerium für Bildung und Forschung;
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Cell Biology
                Computational and Systems Biology
                Custom metadata
                2.3
                Autonomous patterns of cell contraction in the context of localized apical extracellular matrix constraints specify tissue stresses that reshape the wing epithelium.

                Life sciences
                morphogenesis,tissue-mechanics,cell-dynamics,drosophila,wing-epithelium,continuum-mechanics,d. melanogaster

                Comments

                Comment on this article