9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A magnetic Co-based heterogeneous catalyst derived from MOFs is highly efficient in selective oxidation of alcohols in neat water under an atmospheric pressure of air and base-free conditions.

          Abstract

          A simple and highly efficient nanostructured catalyst system comprising magnetic Co nanoparticles stabilized by N-doped carbon composite (Co/C–N) was synthesized by one-pot thermal decomposition of a Co-containing MOF. The catalysts were characterized by temperature programmed desorption (TPD), N 2 physical adsorption, powder X-ray diffraction (PXRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electronic microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The catalytic activity of Co/C–N materials was investigated in the selective aerobic oxidation of alcohols in neat water under an atmospheric pressure of air and base-free conditions. As compared to those prepared by traditional impregnation methods, Co/C–N exhibited an efficient performance with significantly improved catalytic activities. Besides conferring high activity and selectivity to the target products, the proposed catalytic system featured a broad substrate scope for both aryl and alkyl alcohols. Furthermore, the magnetically recoverable Co/C–N catalyst could be easily separated from the reaction system by using an external magnetic field and reused at least five times without any significant loss in catalytic efficiency under the investigated conditions.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Luminescent metal-organic frameworks for chemical sensing and explosive detection.

          Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metal-organic framework as a template for porous carbon synthesis.

              Porous carbon was synthesized by heating the precursor FA within the pores of MOF-5. The resultant carbon displayed a high specific surface area (BET, 2872 m2.g-1) and important hydrogen uptake (2.6 wt % at 760 Torr, -196 degrees C) as well as excellent electrochemical properties as an electrode material for electrochemical double-layered capacitor (EDLC).
                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2016
                2016
                : 18
                : 4
                : 1061-1069
                Article
                10.1039/C5GC02082D
                a743207d-3742-459c-9aa3-3a18ac0994a9
                © 2016
                History

                Comments

                Comment on this article