53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PRDM family members are transcriptional regulators involved in tissue specific differentiation. PRDM5 has been reported to predominantly repress transcription, but a characterization of its molecular functions in a relevant biological context is lacking. We demonstrate here that Prdm5 is highly expressed in developing bones; and, by genome-wide mapping of Prdm5 occupancy in pre-osteoblastic cells, we uncover a novel and unique role for Prdm5 in targeting all mouse collagen genes as well as several SLRP proteoglycan genes. In particular, we show that Prdm5 controls both Collagen I transcription and fibrillogenesis by binding inside the Col1a1 gene body and maintaining RNA polymerase II occupancy. In vivo, Prdm5 loss results in delayed ossification involving a pronounced impairment in the assembly of fibrillar collagens. Collectively, our results define a novel role for Prdm5 in sustaining the transcriptional program necessary to the proper assembly of osteoblastic extracellular matrix.

          Author Summary

          Bone provides the essential tensile strength of the skeletal system, constitutes an important storage for minerals, and hosts the initial differentiation stages of the hematopoietic system. In addition, bones are important endocrine organs affecting organismal metabolism. Consequently, many human diseases arise from defects in bone formation or homeostasis. Hence, deciphering the molecular mechanisms underlying bone formation is essential for understanding the basis of bone and extracellular matrix-associated diseases. Here, we provide a detailed characterization of the cellular and molecular functions of the transcription factor Prdm5 during murine bone formation in vivo and find that Prdm5 is expressed in skeletal structures during development and that its loss impacts the ossification process, leading to a decrease in bone mineral density. A genome-wide mapping of Prdm5 binding sites in pre-osteoblastic cells reveals an unprecedented role for a transcription factor in targeting virtually all members of the Collagen and SLRP gene families. Interestingly, Prdm5 predominantly binds exonic regions of collagen genes and associates with RNA Polymerase II to sustain Collagen I transcription.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels.

          During endochondral bone development, the first osteoblasts differentiate in the perichondrium surrounding avascular cartilaginous rudiments; the source of trabecular osteoblasts inside the later bone is, however, unknown. Here, we generated tamoxifen-inducible transgenic mice bred to Rosa26R-LacZ reporter mice to follow the fates of stage-selective subsets of osteoblast lineage cells. Pulse-chase studies showed that osterix-expressing osteoblast precursors, labeled in the perichondrium prior to vascular invasion of the cartilage, give rise to trabecular osteoblasts, osteocytes, and stromal cells inside the developing bone. Throughout the translocation, some precursors were found to intimately associate with invading blood vessels, in pericyte-like fashion. A similar coinvasion occurs during endochondral healing of bone fractures. In contrast, perichondrial mature osteoblasts did not exhibit perivascular localization and remained in the outer cortex of developing bones. These findings reveal the specific involvement of immature osteoblast precursors in the coupled vascular and osteogenic transformation essential to endochondral bone development and repair. 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of bone development and extracellular matrix protein genes by RUNX2.

            RUNX2 is a multifunctional transcription factor that controls skeletal development by regulating the differentiation of chondrocytes and osteoblasts and the expression of many extracellular matrix protein genes during chondrocyte and osteoblast differentiation. This transcription factor plays a major role at the late stage of chondrocyte differentiation: it is required for chondrocyte maturation and regulates Col10a1 expression in hypertrophic chondrocytes and the expression of Spp1, Ibsp, and Mmp13 in terminal hypertrophic chondrocytes. It is essential for the commitment of pluripotent mesenchymal cells to the osteoblast lineage. During osteoblast differentiation, RUNX2 upregulates the expression of bone matrix protein genes including Col1a1, Spp1, Ibsp, Bglap, and Fn1 in vitro and activates many promoters including those of Col1a1, Col1a2, Spp1, Bglap, and Mmp13. However, overexpression of Runx2 inhibits osteoblast maturation and reduces Col1a1 and Bglap expression. The inhibition of RUNX2 in mature osteoblasts does not reduce the expression of Col1a1 and Bglap in mice. Thus, RUNX2 directs pluripotent mesenchymal cells to the osteoblast lineage, triggers the expression of major bone matrix protein genes, and keeps the osteoblasts in an immature stage, but does not play a major role in the maintenance of the expression of Col1a1 or Bglap in mature osteoblasts. During bone development, RUNX2 induces osteoblast differentiation and increases the number of immature osteoblasts, which form immature bone, whereas Runx2 expression has to be downregulated for differentiation into mature osteoblasts, which form mature bone. During dentinogenesis, Runx2 expression is downregulated, and RUNX2 inhibits the terminal differentiation of odontoblasts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells.

              We describe a novel gene, Blimp-1 (for B lymphocyte-induced maturation protein), transcripts of which are rapidly induced during the differentiation of B lymphocytes into immunoglobulin secretory cells and whose expression is characteristic of late B and plasma cell lines. The 856 amino acid open reading frame contains five Krüppel-type zinc finger motifs and proline-rich and acidic regions similar to those of known transcription factors. Serological studies show an approximately 100 kd protein that localizes to the nucleus. Stable or transient transfection of Blimp-1 into B cell lymphoma lines leads to the expression of many of the phenotypic changes associated with B cell differentiation into an early plasma cell stage, including induction of J chain message and immunoglobulin secretion, up-regulation of Syndecan-1, and increased cell size and granularity. Thus, Blimp-1 appears to be a pleiotropic regulatory factor capable of at least partially driving the terminal differentiation of B cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2012
                May 2012
                10 May 2012
                : 8
                : 5
                : e1002711
                Affiliations
                [1 ]Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
                [2 ]Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
                [3 ]German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
                [4 ]Department of Developmental Biology, Center for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
                [5 ]Department of Biomedical Sciences and BRIC, University of Copenhagen, Copenhagen, Denmark
                [6 ]Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
                [7 ]Academic Unit of Bone Biology, University of Sheffield Medical School, Sheffield, United Kingdom
                [8 ]Chair of Experimental Genetics TUM, Freising-Weihenstephan, Germany
                University of Washington, United States of America
                Author notes

                Conceived and designed the experiments: GGG RAC JRC AHL. Performed the experiments: GGG KHdL MW BM CKF KTJ JR WH LC HAM. Analyzed the data: GGG KHdL MC RAC MW WH HAM AV HF VG-D MHdA JRC AHL. Wrote the paper: GGG JRC AHL.

                Article
                PGENETICS-D-12-00467
                10.1371/journal.pgen.1002711
                3349747
                22589746
                a74bba12-f9be-4721-81d2-f778becac449
                Galli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 February 2012
                : 29 March 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Developmental Biology
                Genetics
                Model Organisms
                Molecular Cell Biology

                Genetics
                Genetics

                Comments

                Comment on this article