6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Population structure of an endangered frog (Babina subaspera) endemic to the Amami Islands: possible impacts of invasive predators on gene flow

      ,
      Conservation Genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Do island populations have less genetic variation than mainland populations?

          R Frankham (1997)
          Island populations are much more prone to extinction than mainland populations. The reasons for this remain controversial. If inbreeding and loss of genetic variation are involved, then genetic variation must be lower on average in island than mainland populations. Published data on levels of genetic variation for allozymes, nuclear DNA markers, mitochondrial DNA, inversions and quantitative characters in island and mainland populations were analysed. A large and highly significant majority of island populations have less allozyme genetic variation than their mainland counterparts (165 of 202 comparisons), the average reduction being 29 per cent. The magnitude of differences was related to dispersal ability. There were related differences for all the other measures. Island endemic species showed lower genetic variation than related mainland species in 34 of 38 cases. The proportionate reduction in genetic variation was significantly greater in island endemic than in nonendemic island populations in mammals and birds, but not in insects. Genetic factors cannot be discounted as a cause of higher extinction rates of island than mainland populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alien predators are more dangerous than native predators to prey populations.

            Alien predators are widely considered to be more harmful to prey populations than native predators. To evaluate this expectation, we conducted a meta-analysis of the responses of vertebrate prey in 45 replicated and 35 unreplicated field experiments in which the population densities of mammalian and avian predators had been manipulated. Our results showed that predator origin (native versus alien) had a highly significant effect on prey responses, with alien predators having an impact double that of native predators. Also the interaction between location (mainland versus island) and predator origin was significant, revealing the strongest effects with alien predators in mainland areas. Although both these results were mainly influenced by the huge impact of alien predators on the Australian mainland compared with their impact elsewhere, the results demonstrate that introduced predators can impose more intense suppression on remnant populations of native species and hold them further from their predator-free densities than do native predators preying upon coexisting prey.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deciphering amphibian diversity through DNA barcoding: chances and challenges.

              Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.
                Bookmark

                Author and article information

                Journal
                Conservation Genetics
                Conserv Genet
                Springer Nature
                1566-0621
                1572-9737
                June 2012
                January 2012
                : 13
                : 3
                : 717-725
                Article
                10.1007/s10592-012-0320-7
                a758d6ae-04f4-418c-9ef1-31f3229416c5
                © 2012
                History

                Comments

                Comment on this article