6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Manipulation of room-temperature Valley-Coherent Exciton-Polaritons in atomically thin crystals by real and artificial magnetic fields

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Strong spin-orbit coupling and inversion symmetry breaking in transition metal dichalcogenide monolayers yield the intriguing effects of valley-dependent optical selection rules. As such, it is possible to substantially polarize valley excitons with chiral light and furthermore create coherent superpositions of K and K- polarized states. Yet, at ambient conditions dephasing usually becomes too dominant, and valley coherence typically is not observable. Here, we demonstrate that valley coherence is, however, clearly observable for a single monolayer of WSe2, if it is strongly coupled to the optical mode of a high quality factor microcavity. The azimuthal vector, representing the phase of the valley coherent superposition, can be directly manipulated by applying magnetic fields, and furthermore, it sensibly reacts to the polarization anisotropy of the cavity which represents an artificial magnetic field. Our results are in qualitative and quantitative agreement with our model based on pseudospin rate equations, accounting for both effects of real and pseudo-magnetic fields.

          Related collections

          Author and article information

          Journal
          23 July 2020
          Article
          10.1088/2053-1583
          2007.12022
          a760ab85-7151-4933-b9b1-43f95388fc3c

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          2D Mater.7 035025 (2020)
          12 Pages, 5 Figures
          cond-mat.mes-hall cond-mat.mtrl-sci

          Condensed matter,Nanophysics
          Condensed matter, Nanophysics

          Comments

          Comment on this article