8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adapting SHIVs In Vivo Selects for Envelope-Mediated Interferon-α Resistance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lentiviruses are able to establish persistent infection in their respective hosts despite a potent type-I interferon (IFN-I) response following transmission. A number of IFN-I-induced host factors that are able to inhibit lentiviral replication in vitro have been identified, and these studies suggest a role for IFN-induced factors as barriers to cross-species transmission. However, the ability of these factors to inhibit viral replication in vivo has not been well characterized, nor have the viral determinants that contribute to evasion or antagonism of the host IFN-I response. In this study, we hypothesized that the host IFN-I response serves as a strong selective pressure in the context of SIV/HIV chimeric virus (SHIV) infection of macaques and sought to identify the viral determinants that contribute to IFN-I resistance. We assessed the ability of SHIVs encoding HIV-1 sequences adapted by serial passage in macaques versus SHIVs encoding HIV sequences isolated directly from infected individuals to replicate in the presence of IFNα in macaque lymphocytes. We demonstrate that passage in macaques selects for IFNα resistant viruses that have higher replication kinetics and increased envelope content. SHIVs that encode HIV-1 sequences derived directly from infected humans were sensitive to IFNα –induced inhibition whereas SHIVs obtained after passage in macaques were not. This evolutionary process was directly observed in viruses that were serially passaged during the first few months of infection–a time when the IFNα response is high. Differences in IFNα sensitivity mapped to HIV-1 envelope and were associated with increased envelope levels despite similar mRNA expression, suggesting a post-transcriptional mechanism. These studies highlight critical differences in IFNα sensitivity between HIV-1 sequences in infected people and those used in SHIV models.

          Author Summary

          The innate immune system is an important host defense against viral infection. Recently, there has been significant interest in characterizing the innate immune response to HIV-1 infection, in particular the role of type-I interferon (IFN-I). Understanding the interaction of HIV-1 with the innate immune system is particularly important for the development of animal models of infection as innate host factors present potential species-specific barriers to the establishment of persistent infection. One of the most commonly used animal models of HIV-1 infection is chimeric SIV/HIV (SHIV) infection of macaques. Here, we demonstrate that the process of adapting SHIVs for replication in macaques selects for viruses that are resistant to the IFNα response, and we identity important viral determinants that contribute to this resistance. This improved understanding of virus interactions with the innate immune response may facilitate the development of improved animal models of HIV-1 infection.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Glycerol monolaurate prevents mucosal SIV transmission

          While there has been great progress in treating HIV-1 infection1, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission2–4. Nonetheless, studies of vaginal transmission in the SIV-rhesus macaque model point to opportunities in the earliest stages of infection where a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry5, 6. Here we show in this SIV-macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α, plasmacytoid dendritic cells and CCR5+cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruit CD4+T cells to fuel this obligate expansion. We then show that glycerol monolaurate, a widely used antimicrobial compound 7 with inhibitory activity against production of MIP-3α and other proinflammatory cytokines8, can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This novel approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for development of effective interventions to block HIV-1 mucosal transmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic identification of type I and type II interferon-induced antiviral factors.

            Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression.

              Inflammation in HIV infection is predictive of non-AIDS morbidity and death, higher set point plasma virus load and virus acquisition; thus, therapeutic agents are in development to reduce its causes and consequences. However, inflammation may simultaneously confer both detrimental and beneficial effects. This dichotomy is particularly applicable to type I interferons (IFN-I) which, while contributing to innate control of infection, also provide target cells for the virus during acute infection, impair CD4 T-cell recovery, and are associated with disease progression. Here we manipulated IFN-I signalling in rhesus macaques (Macaca mulatta) during simian immunodeficiency virus (SIV) transmission and acute infection with two complementary in vivo interventions. We show that blockade of the IFN-I receptor caused reduced antiviral gene expression, increased SIV reservoir size and accelerated CD4 T-cell depletion with progression to AIDS despite decreased T-cell activation. In contrast, IFN-α2a administration initially upregulated expression of antiviral genes and prevented systemic infection. However, continued IFN-α2a treatment induced IFN-I desensitization and decreased antiviral gene expression, enabling infection with increased SIV reservoir size and accelerated CD4 T-cell loss. Thus, the timing of IFN-induced innate responses in acute SIV infection profoundly affects overall disease course and outweighs the detrimental consequences of increased immune activation. Yet, the clinical consequences of manipulation of IFN signalling are difficult to predict in vivo and therapeutic interventions in human studies should be approached with caution.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                11 July 2016
                July 2016
                : 12
                : 7
                : e1005727
                Affiliations
                [1 ]Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
                [2 ]Pathobiology Graduate Program, University of Washington, Seattle, Washington, United States of America
                [3 ]Aaron Diamond Research Center, New York, New York, United States of America
                Emory University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DFB AS JO. Performed the experiments: DFB AS DH. Analyzed the data: DFB AS JO. Contributed reagents/materials/analysis tools: CCM. Wrote the paper: DFB JO.

                Article
                PPATHOGENS-D-16-00218
                10.1371/journal.ppat.1005727
                4939950
                27399306
                a764f34a-7b49-47fc-b684-bc3141021779
                © 2016 Boyd et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 January 2016
                : 5 June 2016
                Page count
                Figures: 6, Tables: 0, Pages: 19
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R37 AI038518
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000026, National Institute on Drug Abuse;
                Award ID: DP1 DA039543
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100001117, amfAR, The Foundation for AIDS Research;
                Award ID: Mathilde Krim Fellowship in Basic Biomedical Research 109278-48-RKVA
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: T32 AI083203
                Award Recipient :
                This project was supported by NIH grant R37 AI038518 and DP1 DA039543 to JO. AS and DFB were supported in part by amfAR Mathilde Krim Fellowship in Basic Biomedical Research 109278-48-RKVA and NIH training grant T32 AI083203, respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Biology and life sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Mammals
                Primates
                Monkeys
                Old World monkeys
                Macaque
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                HIV-1
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                HIV-1
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                HIV-1
                Biology and Life Sciences
                Organisms
                Viruses
                Immunodeficiency Viruses
                HIV
                HIV-1
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Retroviruses
                Lentivirus
                HIV
                HIV-1
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                HIV-1
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                HIV-1
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                HIV-1
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Lymphocytes
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Lymphocytes
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Lymphocytes
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Lymphocytes
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                SIV
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                SIV
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Immunodeficiency Viruses
                SIV
                Biology and Life Sciences
                Organisms
                Viruses
                Immunodeficiency Viruses
                SIV
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Retroviruses
                Lentivirus
                SIV
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                SIV
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                SIV
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Retroviruses
                Lentivirus
                SIV
                Biology and Life Sciences
                Cell Biology
                Cell Physiology
                Cell Immortalization
                Biology and Life Sciences
                Biochemistry
                Proteins
                Interferons
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Virions
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article