17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pd(ii)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers

      , , , , , ,
      Chemical Science
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds.

          The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the past decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e., not benzylic or alpha to heteroatom) sp(3) C-H bonds to C-C bonds are rare, with most examples limited to t-butyl groups, a conversion that is inherently simple because there are no beta-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C-H bonds to C-C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g., copper, iron, and manganese) are rarely used. This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp(3) C-H bonds. This procedure allows for the beta-arylation of carboxylic acid derivatives and the gamma-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C-H bonds (i.e., those with pK(a) values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C-H activation/borylation methodology, in which functionalization usually occurs at the least hindered position. We also describe preliminary investigations to determine the mechanisms of these transformations. We anticipate that other transition metals, including iron, nickel, cobalt, and silver, will also be able to facilitate deprotonation/arylation reaction sequences.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              C-H functionalization logic in total synthesis.

              In this critical review, the strategic and economic benefits of C-H functionalization logic will be analyzed through the critical lens of total synthesis. In order to illustrate the dramatically simplifying effects this type of logic can potentially have on synthetic planning, we take the reader through a series of case studies in which it has already been successfully applied. In the first section, a chronological look at key historical syntheses will be examined, leading into modern day examples. In the second section, our own experience with applying and executing synthesis with a C-H functionalization "mindset" will be discussed (114 references).
                Bookmark

                Author and article information

                Journal
                CSHCBM
                Chemical Science
                Chem. Sci.
                Royal Society of Chemistry (RSC)
                2041-6520
                2041-6539
                2013
                2013
                : 4
                : 11
                : 4187
                Article
                10.1039/c3sc51993g
                a765f3ac-f74f-423c-9e75-e4c36400c095
                © 2013
                History

                Comments

                Comment on this article