65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CONSORT 2010 statement: extension to randomised pilot and feasibility trials

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Consolidated Standards of Reporting Trials (CONSORT) statement is a guideline designed to improve the transparency and quality of the reporting of randomised controlled trials (RCTs). In this article we present an extension to that statement for randomised pilot and feasibility trials conducted in advance of a future definitive RCT. The checklist applies to any randomised study in which a future definitive RCT, or part of it, is conducted on a smaller scale, regardless of its design (eg, cluster, factorial, crossover) or the terms used by authors to describe the study (eg, pilot, feasibility, trial, study). The extension does not directly apply to internal pilot studies built into the design of a main trial, non-randomised pilot and feasibility studies, or phase II studies, but these studies all have some similarities to randomised pilot and feasibility studies and so many of the principles might also apply.

          The development of the extension was motivated by the growing number of studies described as feasibility or pilot studies and by research that has identified weaknesses in their reporting and conduct. We followed recommended good practice to develop the extension, including carrying out a Delphi survey, holding a consensus meeting and research team meetings, and piloting the checklist.

          The aims and objectives of pilot and feasibility randomised studies differ from those of other randomised trials. Consequently, although much of the information to be reported in these trials is similar to those in randomised controlled trials (RCTs) assessing effectiveness and efficacy, there are some key differences in the type of information and in the appropriate interpretation of standard CONSORT reporting items. We have retained some of the original CONSORT statement items, but most have been adapted, some removed, and new items added. The new items cover how participants were identified and consent obtained; if applicable, the prespecified criteria used to judge whether or how to proceed with a future definitive RCT; if relevant, other important unintended consequences; implications for progression from pilot to future definitive RCT, including any proposed amendments; and ethical approval or approval by a research review committee confirmed with a reference number.

          This article includes the 26 item checklist, a separate checklist for the abstract, a template for a CONSORT flowchart for these studies, and an explanation of the changes made and supporting examples. We believe that routine use of this proposed extension to the CONSORT statement will result in improvements in the reporting of pilot trials.

          Editor’s note: In order to encourage its wide dissemination this article is freely accessible on the BMJ and Pilot and Feasibility Studies journal websites.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials.

          The CONSORT (Consolidated Standards of Reporting Trials) statement is used worldwide to improve the reporting of randomized, controlled trials. Schulz and colleagues describe the latest version, CONSORT 2010, which updates the reporting guideline based on new methodological evidence and accumulating experience.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Defining Feasibility and Pilot Studies in Preparation for Randomised Controlled Trials: Development of a Conceptual Framework

            We describe a framework for defining pilot and feasibility studies focusing on studies conducted in preparation for a randomised controlled trial. To develop the framework, we undertook a Delphi survey; ran an open meeting at a trial methodology conference; conducted a review of definitions outside the health research context; consulted experts at an international consensus meeting; and reviewed 27 empirical pilot or feasibility studies. We initially adopted mutually exclusive definitions of pilot and feasibility studies. However, some Delphi survey respondents and the majority of open meeting attendees disagreed with the idea of mutually exclusive definitions. Their viewpoint was supported by definitions outside the health research context, the use of the terms ‘pilot’ and ‘feasibility’ in the literature, and participants at the international consensus meeting. In our framework, pilot studies are a subset of feasibility studies, rather than the two being mutually exclusive. A feasibility study asks whether something can be done, should we proceed with it, and if so, how. A pilot study asks the same questions but also has a specific design feature: in a pilot study a future study, or part of a future study, is conducted on a smaller scale. We suggest that to facilitate their identification, these studies should be clearly identified using the terms ‘feasibility’ or ‘pilot’ as appropriate. This should include feasibility studies that are largely qualitative; we found these difficult to identify in electronic searches because researchers rarely used the term ‘feasibility’ in the title or abstract of such studies. Investigators should also report appropriate objectives and methods related to feasibility; and give clear confirmation that their study is in preparation for a future randomised controlled trial designed to assess the effect of an intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Design and analysis of pilot studies: recommendations for good practice.

              Pilot studies play an important role in health research, but they can be misused, mistreated and misrepresented. In this paper we focus on pilot studies that are used specifically to plan a randomized controlled trial (RCT). Citing examples from the literature, we provide a methodological framework in which to work, and discuss reasons why a pilot study might be undertaken. A well-conducted pilot study, giving a clear list of aims and objectives within a formal framework will encourage methodological rigour, ensure that the work is scientifically valid and publishable, and will lead to higher quality RCTs. It will also safeguard against pilot studies being conducted simply because of small numbers of available patients.
                Bookmark

                Author and article information

                Contributors
                Role: professor
                Role: statistician
                Role: professor
                Role: professor
                Role: associate professor
                Role: professor
                Role: director postgraduate statistics centre
                Journal
                BMJ
                BMJ
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2016
                24 October 2016
                : 355
                : i5239
                Affiliations
                [1 ]Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
                [2 ]School of Health and Related Research, University of Sheffield, Sheffield, UK
                [3 ]Centre of Academic Primary Care, University of Aberdeen, Aberdeen, Scotland, UK
                [4 ]Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
                [5 ]Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
                [6 ]Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
                Author notes
                Correspondence to: S M Eldridge s.eldridge@ 123456qmul.ac.uk
                Article
                elds033598
                10.1136/bmj.i5239
                5076380
                27777223
                a770855c-42dc-414f-87c2-85aa43594f4b
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 3.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/3.0/.

                History
                : 18 September 2016
                Categories
                Research Methods & Reporting

                Medicine
                Medicine

                Comments

                Comment on this article