6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Influence of the N:P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp.

      , ,
      Bioresource Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options.

          Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Placing microalgae on the biofuels priority list: a review of the technological challenges.

            Microalgae provide various potential advantages for biofuel production when compared with 'traditional' crops. Specifically, large-scale microalgal culture need not compete for arable land, while in theory their productivity is greater. In consequence, there has been resurgence in interest and a proliferation of algae fuel projects. However, while on a theoretical basis, microalgae may produce between 10- and 100-fold more oil per acre, such capacities have not been validated on a commercial scale. We critically review current designs of algal culture facilities, including photobioreactors and open ponds, with regards to photosynthetic productivity and associated biomass and oil production and include an analysis of alternative approaches using models, balancing space needs, productivity and biomass concentrations, together with nutrient requirements. In the light of the current interest in synthetic genomics and genetic modifications, we also evaluate the options for potential metabolic engineering of the lipid biosynthesis pathways of microalgae. We conclude that although significant literature exists on microalgal growth and biochemistry, significantly more work needs to be undertaken to understand and potentially manipulate algal lipid metabolism. Furthermore, with regards to chemical upgrading of algal lipids and biomass, we describe alternative fuel synthesis routes, and discuss and evaluate the application of catalysts traditionally used for plant oils. Simulations that incorporate financial elements, along with fluid dynamics and algae growth models, are likely to be increasingly useful for predicting reactor design efficiency and life cycle analysis to determine the viability of the various options for large-scale culture. The greatest potential for cost reduction and increased yields most probably lies within closed or hybrid closed-open production systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance.

              This research examines the life-cycle water and nutrients usage of microalgae-based biodiesel production. The influence of water types, operation with and without recycling, algal species, geographic distributions are analyzed. The results confirm the competitiveness of microalgae-based biofuels and highlight the necessity of recycling harvested water and using sea/wastewater as water source. To generate 1 kg biodiesel, 3726 kg water, 0.33 kg nitrogen, and 0.71 kg phosphate are required if freshwater used without recycling. Recycling harvest water reduces the water and nutrients usage by 84% and 55%. Using sea/wastewater decreases 90% water requirement and eliminates the need of all the nutrients except phosphate. The variation in microalgae species and geographic distribution are analyzed to reflect microalgae biofuel development in the US. The impacts of current federal and state renewable energy programs are also discussed to suggest suitable microalgae biofuel implementation pathways and identify potential bottlenecks. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Bioresource Technology
                Bioresource Technology
                Elsevier BV
                09608524
                October 2014
                October 2014
                : 169
                :
                : 588-595
                Article
                10.1016/j.biortech.2014.07.048
                a774be07-622b-44a1-a342-e23ba691516a
                © 2014
                History

                Comments

                Comment on this article