Blog
About

16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been known that circular RNAs are widely expressed in human tissues and cells, and play important regulatory roles in physiological or pathological processes. However, there is lack of comprehensively annotated human circular RNAs database. In this study we established a circRNA database, named as circRNADb, containing 32,914 human exonic circRNAs carefully selected from diversified sources. The detailed information of the circRNA, including genomic information, exon splicing, genome sequence, internal ribosome entry site (IRES), open reading frame (ORF) and references were provided in circRNADb. In addition, circRNAs were found to be able to encode proteins, which have not been reported in any species. 16328 circRNAs were annotated to have ORF longer than 100 amino acids, of which 7170 have IRES elements. 46 circRNAs from 37 genes were found to have their corresponding proteins expressed according mass spectrometry. The database provides the function of data search, browse, download, submit and feedback for the user to study particular circular RNA of interest and update the database continually. circRNADb will be built to be a biological information platform for circRNA molecules and related biological functions in the future. The database can be freely available through the web server at http://reprod.njmu.edu.cn/circrnadb.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Circular RNAs are a large class of animal RNAs with regulatory potency.

          Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural RNA circles function as efficient microRNA sponges.

            MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more than 70 selectively conserved miRNA target sites, and it is highly and widely associated with Argonaute (AGO) proteins in a miR-7-dependent manner. Although the circRNA is completely resistant to miRNA-mediated target destabilization, it strongly suppresses miR-7 activity, resulting in increased levels of miR-7 targets. In the mouse brain, we observe overlapping co-expression of ciRS-7 and miR-7, particularly in neocortical and hippocampal neurons, suggesting a high degree of endogenous interaction. We further show that the testis-specific circRNA, sex-determining region Y (Sry), serves as a miR-138 sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              2016 update of the PRIDE database and its related tools

              The PRoteomics IDEntifications (PRIDE) database is one of the world-leading data repositories of mass spectrometry (MS)-based proteomics data. Since the beginning of 2014, PRIDE Archive (http://www.ebi.ac.uk/pride/archive/) is the new PRIDE archival system, replacing the original PRIDE database. Here we summarize the developments in PRIDE resources and related tools since the previous update manuscript in the Database Issue in 2013. PRIDE Archive constitutes a complete redevelopment of the original PRIDE, comprising a new storage backend, data submission system and web interface, among other components. PRIDE Archive supports the most-widely used PSI (Proteomics Standards Initiative) data standard formats (mzML and mzIdentML) and implements the data requirements and guidelines of the ProteomeXchange Consortium. The wide adoption of ProteomeXchange within the community has triggered an unprecedented increase in the number of submitted data sets (around 150 data sets per month). We outline some statistics on the current PRIDE Archive data contents. We also report on the status of the PRIDE related stand-alone tools: PRIDE Inspector, PRIDE Converter 2 and the ProteomeXchange submission tool. Finally, we will give a brief update on the resources under development ‘PRIDE Cluster’ and ‘PRIDE Proteomes’, which provide a complementary view and quality-scored information of the peptide and protein identification data available in PRIDE Archive.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                11 October 2016
                2016
                : 6
                Affiliations
                [1 ]Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing 211106, China
                [2 ]Department of Gynecology and Obstetrics, The First Affiliated Hospital with Nanjing Medical University , Nanjing 210029, China
                [3 ]State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing 210029, China
                [4 ]Center of Pathology and Clinical Laboratory, Sir Run Run Hospital Affiliated with Nanjing Medical University , Nanjing 211166, China
                Author notes
                Article
                srep34985
                10.1038/srep34985
                5057092
                27725737
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article