20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of the gut microbiota in NAFLD

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NAFLD is now the most common cause of liver disease in Western countries. This Review explores the links between NAFLD, the metabolic syndrome, dysbiosis, poor diet and gut health. Animal studies in which the gut microbiota are manipulated, and observational studies in patients with NAFLD, have provided considerable evidence that dysbiosis contributes to the pathogenesis of NAFLD. Dysbiosis increases gut permeability to bacterial products and increases hepatic exposure to injurious substances that increase hepatic inflammation and fibrosis. Dysbiosis, combined with poor diet, also changes luminal metabolism of food substrates, such as increased production of certain short-chain fatty acids and alcohol, and depletion of choline. Changes to the microbiome can also cause dysmotility, gut inflammation and other immunological changes in the gut that might contribute to liver injury. Evidence also suggests that certain food components and lifestyle factors, which are known to influence the severity of NAFLD, do so at least in part by changing the gut microbiota. Improved methods of analysis of the gut microbiome, and greater understanding of interactions between dysbiosis, diet, environmental factors and their effects on the gut-liver axis should improve the treatment of this common liver disease and its associated disorders.

          Related collections

          Most cited references 116

          • Record: found
          • Abstract: found
          • Article: not found

          Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.

          Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.

            Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice also had reduced bile acid pools and reduced fecal bile acid excretion due to decreased expression of the major hepatic canalicular bile acid transport protein. Bile acid repression and induction of cholesterol 7alpha-hydroxylase and the ileal bile acid binding protein, respectively, did not occur in FXR/BAR null mice, establishing the regulatory role of FXR/BAR for the expression of these genes in vivo. These data demonstrate that FXR/BAR is critical for bile acid and lipid homeostasis by virtue of its role as an intracellular bile acid sensor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electron transfer in syntrophic communities of anaerobic bacteria and archaea.

              Interspecies electron transfer is a key process in methanogenic and sulphate-reducing environments. Bacteria and archaea that live in syntrophic communities take advantage of the metabolic abilities of their syntrophic partner to overcome energy barriers and break down compounds that they cannot digest by themselves. Here, we review the transfer of hydrogen and formate between bacteria and archaea that helps to sustain growth in syntrophic methanogenic communities. We also describe the process of reverse electron transfer, which is a key requirement in obligately syntrophic interactions. Anaerobic methane oxidation coupled to sulphate reduction is also carried out by syntrophic communities of bacteria and archaea but, as we discuss, the exact mechanism of this syntrophic interaction is not yet understood.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Gastroenterology & Hepatology
                Nat Rev Gastroenterol Hepatol
                Springer Science and Business Media LLC
                1759-5045
                1759-5053
                July 2016
                June 8 2016
                July 2016
                : 13
                : 7
                : 412-425
                Article
                10.1038/nrgastro.2016.85
                27273168
                a78a5db5-a92a-40f9-b6ef-5872fc16b0f4
                © 2016

                Comments

                Comment on this article