92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Epigenetic Landscape of Latent Kaposi Sarcoma-Associated Herpesvirus Genomes

      research-article
      , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Herpesvirus latency is generally thought to be governed by epigenetic modifications, but the dynamics of viral chromatin at early timepoints of latent infection are poorly understood. Here, we report a comprehensive spatial and temporal analysis of DNA methylation and histone modifications during latent infection with Kaposi Sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi Sarcoma and primary effusion lymphoma (PEL). By use of high resolution tiling microarrays in conjunction with immunoprecipitation of methylated DNA (MeDIP) or modified histones (chromatin IP, ChIP), our study revealed highly distinct landscapes of epigenetic modifications associated with latent KSHV infection in several tumor-derived cell lines as well as de novo infected endothelial cells. We find that KSHV genomes are subject to profound methylation at CpG dinucleotides, leading to the establishment of characteristic global DNA methylation patterns. However, such patterns evolve slowly and thus are unlikely to control early latency. In contrast, we observed that latency-specific histone modification patterns were rapidly established upon a de novo infection. Our analysis furthermore demonstrates that such patterns are not characterized by the absence of activating histone modifications, as H3K9/K14-ac and H3K4-me3 marks were prominently detected at several loci, including the promoter of the lytic cycle transactivator Rta. While these regions were furthermore largely devoid of the constitutive heterochromatin marker H3K9-me3, we observed rapid and widespread deposition of H3K27-me3 across latent KSHV genomes, a bivalent modification which is able to repress transcription in spite of the simultaneous presence of activating marks. Our findings suggest that the modification patterns identified here induce a poised state of repression during viral latency, which can be rapidly reversed once the lytic cycle is induced.

          Author Summary

          A characteristic feature of herpesviruses is their ability to establish a latent infection during which most of the viral genes are silenced. As a consequence, no viral progeny is produced and the host cell remains viable. While the viral genome may persist in the nucleus of such cells indefinitely, it retains the ability to re-enter the lytic cycle and produce new virions if conditions in the cell become unfavorable. The molecular requirements for the establishment of latency are poorly understood, but are thought to depend on epigenetic modifications of the viral episome. Here, we report a genome-wide screen to investigate DNA methylation and histone modification patterns associated with latent infection by Kaposi Sarcoma-associated herpesvirus (KSHV), a tumor virus linked to the development of several cancers. We find that latency is likely to be determined by modifications commonly associated with genes that are transcriptionally “poised”. The promoters of such genes harbor activating as well as repressive histone marks such that they are silenced, but they can be rapidly activated upon removal of the repressive marks. Our findings thus may explain how KSHV achieves efficient quiescence during latency, yet retains the potential to quickly revert to a fully active state upon induction of the lytic cycle.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.

          Representational difference analysis was used to isolate unique sequences present in more than 90 percent of Kaposi's sarcoma (KS) tissues obtained from patients with acquired immunodeficiency syndrome (AIDS). These sequences were not present in tissue DNA from non-AIDS patients, but were present in 15 percent of non-KS tissue DNA samples from AIDS patients. The sequences are homologous to, but distinct from, capsid and tegument protein genes of the Gammaherpesvirinae, herpesvirus saimiri and Epstein-Barr virus. These KS-associated herpesvirus-like (KSHV) sequences appear to define a new human herpesvirus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.

            Cytosine methylation is required for mammalian development and is often perturbed in human cancer. To determine how this epigenetic modification is distributed in the genomes of primary and transformed cells, we used an immunocapturing approach followed by DNA microarray analysis to generate methylation profiles of all human chromosomes at 80-kb resolution and for a large set of CpG islands. In primary cells we identified broad genomic regions of differential methylation with higher levels in gene-rich neighborhoods. Female and male cells had indistinguishable profiles for autosomes but differences on the X chromosome. The inactive X chromosome (Xi) was hypermethylated at only a subset of gene-rich regions and, unexpectedly, overall hypomethylated relative to its active counterpart. The chromosomal methylation profile of transformed cells was similar to that of primary cells. Nevertheless, we detected large genomic segments with hypomethylation in the transformed cell residing in gene-poor areas. Furthermore, analysis of 6,000 CpG islands showed that only a small set of promoters was methylated differentially, suggesting that aberrant methylation of CpG island promoters in malignancy might be less frequent than previously hypothesized.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of polycomb gene silencing: knowns and unknowns.

              Polycomb proteins form chromatin-modifying complexes that implement transcriptional silencing in higher eukaryotes. Hundreds of genes are silenced by Polycomb proteins, including dozens of genes that encode crucial developmental regulators in organisms ranging from plants to humans. Two main families of complexes, called Polycomb repressive complex 1 (PRC1) and PRC2, are targeted to repressed regions. Recent studies have advanced our understanding of these complexes, including their potential mechanisms of gene silencing, the roles of chromatin modifications, their means of delivery to target genes and the functional distinctions among variant complexes. Emerging concepts include the existence of a Polycomb barrier to transcription elongation and the involvement of non-coding RNAs in the targeting of Polycomb complexes. These findings have an impact on the epigenetic programming of gene expression in many biological systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2010
                June 2010
                3 June 2010
                : 6
                : 6
                : e1000935
                Affiliations
                [1]Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
                Sanger Institute, United Kingdom
                Author notes

                Conceived and designed the experiments: TG AG. Performed the experiments: TG. Analyzed the data: TG AG. Wrote the paper: AG.

                Article
                10-PLPA-RA-2419R2
                10.1371/journal.ppat.1000935
                2880564
                20532208
                a78dcb17-dfd6-477c-b259-7602de80531e
                Günther, Grundhoff. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 January 2010
                : 3 May 2010
                Page count
                Pages: 19
                Categories
                Research Article
                Genetics and Genomics/Epigenetics
                Genetics and Genomics/Gene Expression
                Virology/Persistence and Latency
                Virology/Viral Replication and Gene Regulation
                Virology/Viruses and Cancer

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article