53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wilson disease is an autosomal recessive genetic disorder caused by loss-of-function mutations in the P-type copper ATPase, ATP7B, which leads to toxic accumulation of copper mainly in the liver and brain. Wilson disease is treatable, primarily by copper-chelation therapy, which promotes copper excretion. Although several de-coppering drugs are currently available, their Cu(I)-binding affinities have not been quantitatively characterized. Here we determined the Cu(I)-binding affinities of five major de-coppering drugs – D-penicillamine, trientine, 2,3-dimercapto-1-propanol, meso-2,3-dimercaptosuccinate and tetrathiomolybdate – by exploring their ability to extract Cu(I) ions from two Cu(I)-binding proteins, the copper chaperone for cytochrome c oxidase, Cox17, and metallothionein. We report that the Cu(I)-binding affinity of these drugs varies by four orders of magnitude and correlates positively with the number of sulfur atoms in the drug molecule and negatively with the number of atoms separating two SH groups. Based on the analysis of structure-activity relationship and determined Cu(I)-binding affinity, we hypothesize that the endogenous biologically active substance, α-lipoic acid, may be suitable for the treatment of Wilson disease. Our hypothesis is supported by cell culture experiments where α-lipoic acid protected hepatic cells from copper toxicity. These results provide a basis for elaboration of new generation drugs that may provide better therapeutic outcomes.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Diagnosis and treatment of Wilson disease: an update.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene.

            Wilson disease (WD) is an autosomal recessive disorder of copper transport, resulting in copper accumulation and toxicity to the liver and brain. The gene (WD) has been mapped to chromosome 13 q14.3. On yeast artificial chromosomes from this region we have identified a sequence, similar to that coding for the proposed copper binding regions of the putative ATPase gene (MNK) defective in Menkes disease. We show that this sequence forms part of a P-type ATPase gene (referred to here as Wc1) that is very similar to MNK, with six putative metal binding regions similar to those found in prokaryotic heavy metal transporters. The gene, expressed in liver and kidney, lies within a 300 kb region likely to include the WD locus. Two WD patients were found to be homozygous for a seven base deletion within the coding region of Wc1. Wc1 is proposed as the gene for WD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential.

              Alpha-lipoic acid (LA) has become a common ingredient in multivitamin formulas, anti-aging supplements, and even pet food. It is well-defined as a therapy for preventing diabetic polyneuropathies, and scavenges free radicals, chelates metals, and restores intracellular glutathione levels which otherwise decline with age. How do the biochemical properties of LA relate to its biological effects? Herein, we review the molecular mechanisms of LA discovered using cell and animal models, and the effects of LA on human subjects. Though LA has long been touted as an antioxidant, it has also been shown to improve glucose and ascorbate handling, increase eNOS activity, activate Phase II detoxification via the transcription factor Nrf2, and lower expression of MMP-9 and VCAM-1 through repression of NF-kappa B. LA and its reduced form, dihydrolipoic acid, may use their chemical properties as a redox couple to alter protein conformations by forming mixed disulfides. Beneficial effects are achieved with low micromolar levels of LA, suggesting that some of its therapeutic potential extends beyond the strict definition of an antioxidant. Current trials are investigating whether these beneficial properties of LA make it an appropriate treatment not just for diabetes, but also for the prevention of vascular disease, hypertension, and inflammation.
                Bookmark

                Author and article information

                Contributors
                peep.palumaa@ttu.ee
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 January 2018
                23 January 2018
                2018
                : 8
                : 1463
                Affiliations
                [1 ]ISNI 0000000110107715, GRID grid.6988.f, Department of Chemistry and Biotechnology, , Tallinn University of Technology, ; Akadeemia tee 15, 12618 Tallinn, Estonia
                [2 ]Wilson Therapeutics AB, Västra Kungsgatan 3, S-111 43 Stockholm, Sweden
                Article
                19873
                10.1038/s41598-018-19873-2
                5780470
                29362485
                a7c53d38-cd2e-436c-8a2e-1a58ce005c71
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 October 2017
                : 9 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article