18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of microbial amyloid in neurodegeneration

      review-article
      1 , * , 2
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has become apparent that the intestinal microbiota orchestrates important aspects of our metabolism, immunity, and development. Recent work has demonstrated that the microbiota also influences brain function in healthy and diseased individuals. Of great interest are reports that intestinal bacteria play a role in the pathogenic cascade of both Parkinson and Alzheimer diseases. These neurodegenerative disorders both involve misfolding of endogenous proteins that spreads from one region of the body to another in a manner analogous to prions. The mechanisms of how the microbiota influences or is correlated with disease require elaboration. Microbial proteins or metabolites may influence neurodegeneration through the promotion of amyloid formation by human proteins or by enhancing inflammatory responses to endogenous neuronal amyloids. We review the current knowledge concerning bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation. We propose the term “mapranosis” to describe the process of microbiota-associated proteopathy and neuroinflammation. The study of amyloid proteins made by the microbiota and their influence on health and disease is in its infancy. This is a promising area for therapeutic intervention because there are many ways to alter our microbial partners and their products, including amyloid proteins.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The microbiome and innate immunity.

          The intestinal microbiome is a signalling hub that integrates environmental inputs, such as diet, with genetic and immune signals to affect the host's metabolism, immunity and response to infection. The haematopoietic and non-haematopoietic cells of the innate immune system are located strategically at the host-microbiome interface. These cells have the ability to sense microorganisms or their metabolic products and to translate the signals into host physiological responses and the regulation of microbial ecology. Aberrations in the communication between the innate immune system and the gut microbiota might contribute to complex diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota

            Alzheimer’s disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer’s disease is not known. To this end we sequenced bacterial 16S rRNA from fecal samples of Aβ precursor protein (APP) transgenic mouse model and found a remarkable shift in the gut microbiota as compared to non-transgenic wild-type mice. Subsequently we generated germ-free APP transgenic mice and found a drastic reduction of cerebral Aβ amyloid pathology when compared to control mice with intestinal microbiota. Importantly, colonization of germ-free APP transgenic mice with microbiota from conventionally-raised APP transgenic mice increased cerebral Aβ pathology, while colonization with microbiota from wild-type mice was less effective in increasing cerebral Aβ levels. Our results indicate a microbial involvement in the development of Abeta amyloid pathology, and suggest that microbiota may contribute to the development of neurodegenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium.

              The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer's patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady state and during aging; molecules expressed on M cells which appear to be used as "immunosurveillance" receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                21 December 2017
                December 2017
                : 13
                : 12
                : e1006654
                Affiliations
                [1 ] Department of Neurology, University of Louisville, Louisville, Kentucky, United States of America
                [2 ] Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
                Stony Brook University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-5721-1843
                http://orcid.org/0000-0002-2645-1294
                Article
                PPATHOGENS-D-17-01644
                10.1371/journal.ppat.1006654
                5739464
                29267402
                a7ca2f6d-426f-422c-9079-86f0feb1b31d
                © 2017 Friedland, Chapman

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Figures: 2, Tables: 0, Pages: 12
                Funding
                This work was supported in part by the Michael J Fox Foundation, the University of Louisville, the family of Susan Grissom, Dr. Walter Cowan, and RO1-GM118651. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Review
                Biology and Life Sciences
                Biochemistry
                Proteins
                Amyloid Proteins
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbiome
                Biology and Life Sciences
                Genetics
                Genomics
                Microbial Genomics
                Microbiome
                Biology and Life Sciences
                Microbiology
                Microbial Genomics
                Microbiome
                Medicine and Health Sciences
                Neurology
                Neurodegenerative Diseases
                Movement Disorders
                Parkinson Disease
                Medicine and Health Sciences
                Mental Health and Psychiatry
                Dementia
                Alzheimer's Disease
                Medicine and Health Sciences
                Neurology
                Dementia
                Alzheimer's Disease
                Medicine and Health Sciences
                Neurology
                Neurodegenerative Diseases
                Alzheimer's Disease
                Biology and Life Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Medicine and Health Sciences
                Anatomy
                Digestive System
                Gastrointestinal Tract
                Biology and Life Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Biology and Life Sciences
                Organisms
                Bacteria
                Medicine and Health Sciences
                Inflammatory Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article