Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Towards the clinical use of concentric electrodes in ECG recordings: influence of ring dimensions and electrode position

      , , , ,

      Measurement Science and Technology

      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          Noninvasive Electroanatomic Mapping of Human Ventricular Arrhythmias with Electrocardiographic Imaging

           Y Rudy,  K. Desouza,  J ZHANG (2011)
          The rapid heartbeat of ventricular tachycardia (VT) can lead to sudden cardiac death and is a major health issue worldwide. Efforts to identify patients at risk, determine mechanisms of VT, and effectively prevent and treat VT through a mechanism-based approach would all be facilitated by continuous, noninvasive imaging of the arrhythmia over the entire heart. Here, we present noninvasive real-time images of human ventricular arrhythmias using electrocardiographic imaging (ECGI). Our results reveal diverse activation patterns, mechanisms, and sites of initiation of human VT. The spatial resolution of ECGI is superior to that of the routinely used 12-lead electrocardiogram, which provides only global information, and ECGI has distinct advantages over the currently used method of mapping with invasive catheter-applied electrodes. The spatial resolution of this method and its ability to image electrical activation sequences over the entire ventricular surfaces in a single heartbeat allowed us to determine VT initiation sites and continuation pathways, as well as VT relationships to ventricular substrates, including anatomical scars and abnormal electrophysiological substrate. Thus, ECGI can map the VT activation sequence and identify the location and depth of VT origin in individual patients, allowing personalized treatment of patients with ventricular arrhythmias.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concentric-ring electrode systems for noninvasive detection of single motor unit activity.

             D. Farina,  C Cescon (2001)
            New recording techniques for detecting surface electromyographic (EMG) signals based on concentric-ring electrodes are proposed in this paper. A theoretical study of the two-dimensional (2-D) spatial transfer function of these recording systems is developed both in case of rings with a physical dimension and in case of line rings. Design criteria for the proposed systems are presented in relation to spatial selectivity. It is shown that, given the radii of the rings, the weights of the spatial filter can be selected in order to improve the rejection of low spatial frequencies, thus increasing spatial selectivity. The theoretical transfer functions of concentric systems are obtained and compared with those of other detection systems. Signals detected with the ring electrodes and with traditional one-dimensional and 2-D systems are compared. The concentric-ring systems show higher spatial selectivity with respect to the traditional detection systems and reduce the problem of electrode location since they are invariant to rotations. The results shown are very promising for the noninvasive detection of single motor unit (MU) activities and decomposition of the surface EMG signal into the constituent MU action potential trains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes.

              Electroencephalography (EEG) signals are spatio-temporal in nature. EEG has very good temporal resolution but typically does not possess high spatial resolution. The surface Laplacian enhances the spatial resolution and selectivity of the surface electrical activity recording. Concentric ring electrodes have been shown to estimate the surface Laplacian directly with significantly better spatial resolution than conventional electrodes. For this report movement-related potentials (MRP) signals were analyzed. The signals were recorded using tri-polar ring electrodes in the original configuration as well as in bipolar and unipolar configurations achieved by excluding or shorting recording surfaces of the tri-polar version, respectively. The electrodes were placed in an array scheme of 35, encompassing the area between Fz-Cz-Pz-P3-T5-T3-F7-F3 centered on C3. Data were measured in five steps sequentially using only seven electrodes at a time, displaced after each step and aligned during evaluation later. Subjects were cued to press a micro-switch. The signal-to-noise ratio (SNR), spatial selectivity, and mutual information (MI) of the MRP signals recorded with the different electrode systems were compared. The MRP signals recorded with the tri-polar concentric ring electrode system have significantly higher SNR than from bipolar concentric ring electrode and conventional disc electrode emulations. The tri-polar electrodes have also shown significantly higher spatial selectivity as well as significantly less mutual information between locations than the other two electrode configurations tested. These characteristics should make tri-polar concentric electrodes beneficial for EEG applications.
                Bookmark

                Author and article information

                Journal
                Measurement Science and Technology
                Meas. Sci. Technol.
                IOP Publishing
                0957-0233
                1361-6501
                February 01 2016
                February 01 2016
                : 27
                : 2
                : 025705
                Article
                10.1088/0957-0233/27/2/025705
                © 2016

                Comments

                Comment on this article