29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent genome projects of various animals have uncovered an unexpectedly large number of opsin genes, which encode protein moieties of photoreceptor molecules, in most animals. In visual systems, the biological meanings of this diversification are clear; multiple types of visual opsins with different spectral sensitivities are responsible for color vision. However, the significance of the diversification of non-visual opsins remains uncertain, in spite of the importance of understanding the molecular mechanism and evolution of varied non-visual photoreceptions.

          Results

          Here, we investigated the diversification of the pineal photopigment parapinopsin, which serves as the UV-sensitive photopigment for the pineal wavelength discrimination in the lamprey, linking it with other pineal photoreception. Spectroscopic analyses of the recombinant pigments of the two teleost parapinopsins PP1 and PP2 revealed that PP1 is a UV-sensitive pigment, similar to lamprey parapinopsin, but PP2 is a blue-sensitive pigment, with an absorption maximum at 460–480 nm, showing the diversification of non-visual pigment with respect to spectral sensitivity. We also found that PP1 and PP2 exhibit mutually exclusive expressions in the pineal organs of three teleost species. By using transgenic zebrafish in which these parapinopsin-expressing cells are labeled, we found that PP1-expressing cells basically possess neuronal processes, which is consistent with their involvement in wavelength discrimination. Interestingly, however, PP2-expressing cells rarely possess neuronal processes, raising the possibility that PP2 could be involved in non-neural responses rather than neural responses. Furthermore, we found that PP2-expressing cells contain serotonin and aanat2, the key enzyme involved in melatonin synthesis from serotonin, whereas PP1-expressing cells do not contain either, suggesting that blue-sensitive PP2 is instead involved in light-regulation of melatonin secretion.

          Conclusions

          In this paper, we have clearly shown the different molecular properties of duplicated non-visual opsins by demonstrating the diversification of parapinopsin with respect to spectral sensitivity. Moreover, we have shown a plausible link between the diversification and its physiological impact by discovering a strong candidate for the underlying pigment in light-regulated melatonin secretion in zebrafish; the diversification could generate a new contribution of parapinopsin to pineal photoreception. Current findings could also provide an opportunity to understand the “color” preference of non-visual photoreception.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12915-015-0174-9) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Genome duplication, a trait shared by 22000 species of ray-finned fish.

          Through phylogeny reconstruction we identified 49 genes with a single copy in man, mouse, and chicken, one or two copies in the tetraploid frog Xenopus laevis, and two copies in zebrafish (Danio rerio). For 22 of these genes, both zebrafish duplicates had orthologs in the pufferfish (Takifugu rubripes). For another 20 of these genes, we found only one pufferfish ortholog but in each case it was more closely related to one of the zebrafish duplicates than to the other. Forty-three pairs of duplicated genes map to 24 of the 25 zebrafish linkage groups but they are not randomly distributed; we identified 10 duplicated regions of the zebrafish genome that each contain between two and five sets of paralogous genes. These phylogeny and synteny data suggest that the common ancestor of zebrafish and pufferfish, a fish that gave rise to approximately 22000 species, experienced a large-scale gene or complete genome duplication event and that the pufferfish has lost many duplicates that the zebrafish has retained.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish.

            For many genes, ray-finned fish (Actinopterygii) have two paralogous copies, where only one ortholog is present in tetrapods. The discovery of an additional, almost-complete set of Hox clusters in teleosts (zebrafish, pufferfish, medaka, and cichlid) but not in basal actinopterygian lineages ( Polypterus) led to the formulation of the fish-specific genome duplication hypothesis. The phylogenetic timing of this genome duplication during the evolution of ray-finned fish is unknown, since only a few species of basal fish lineages have been investigated so far. In this study, three nuclear genes ( fzd8, sox11, tyrosinase) were sequenced from sturgeons (Acipenseriformes), gars (Semionotiformes), bony tongues (Osteoglossomorpha), and a tenpounder (Elopomorpha). For these three genes, two copies have been described previously teleosts (e.g., zebrafish, pufferfish), but only one orthologous copy is found in tetrapods. Individual gene trees for these three genes and a concatenated dataset support the hypothesis that the fish-specific genome duplication event took place after the split of the Acipenseriformes and the Semionotiformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. If these three genes were duplicated during the proposed fish-specific genome duplication event, then this event separates the species-poor early-branching lineages from the species-rich teleost lineage. The additional number of genes resulting from this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene duplication and spectral diversification of cone visual pigments of zebrafish.

              Zebrafish is becoming a powerful animal model for the study of vision but the genomic organization and variation of its visual opsins have not been fully characterized. We show here that zebrafish has two red (LWS-1 and LWS-2), four green (RH2-1, RH2-2, RH2-3, and RH2-4), and single blue (SWS2) and ultraviolet (SWS1) opsin genes in the genome, among which LWS-2, RH2-2, and RH2-3 are novel. SWS2, LWS-1, and LWS-2 are located in tandem and RH2-1, RH2-2, RH2-3, and RH2-4 form another tandem gene cluster. The peak absorption spectra (lambdamax) of the reconstituted photopigments from the opsin cDNAs differed markedly among them: 558 nm (LWS-1), 548 nm (LWS-2), 467 nm (RH2-1), 476 nm (RH2-2), 488 nm (RH2-3), 505 nm (RH2-4), 355 nm (SWS1), 416 nm (SWS2), and 501 nm (RH1, rod opsin). The quantitative RT-PCR revealed a considerable difference among the opsin genes in the expression level in the retina. The expression of the two red opsin genes and of three green opsin genes, RH2-1, RH2-3, and RH2-4, is significantly lower than that of RH2-2, SWS1, and SWS2. These findings must contribute to our comprehensive understanding of visual capabilities of zebrafish and the evolution of the fish visual system and should become a basis of further studies on expression and developmental regulation of the opsin genes.
                Bookmark

                Author and article information

                Contributors
                terakita@sci.osaka-cu.ac.jp
                Journal
                BMC Biol
                BMC Biol
                BMC Biology
                BioMed Central (London )
                1741-7007
                15 September 2015
                15 September 2015
                2015
                : 13
                : 73
                Affiliations
                [ ]Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
                [ ]Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama 332-0012 Japan
                [ ]Graduate School of Humanities and Science, Nara Women’s University, Nara, 630-8506 Japan
                [ ]Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047 Japan
                [ ]Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, Sokendai (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540 Japan
                [ ]Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
                Article
                174
                10.1186/s12915-015-0174-9
                4570685
                26370232
                a7d307e8-07fc-419f-94d5-8c7bc912cd61
                © Koyanagi et al. 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 May 2015
                : 27 July 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Life sciences
                animal photoreception,color vision,gene duplication,rhodopsin,spectral tuning,uv-sensitive pigment

                Comments

                Comment on this article