+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      System Cards for AI-Based Decision-Making for Public Policy


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Decisions in public policy are increasingly being made or assisted by automated decision-making algorithms. Many of these algorithms process personal data for tasks such as predicting recidivism, assisting welfare decisions, identifying individuals using face recognition, and more. While potentially improving efficiency and effectiveness, such algorithms are not inherently free from issues such as bias, opaqueness, lack of explainability, maleficence, and the like. Given that the outcomes of these algorithms have significant impacts on individuals and society and are open to analysis and contestation after deployment, such issues must be accounted for before deployment. Formal audits are a way towards ensuring algorithms that are used in public policy meet the appropriate accountability standards. This work, based on an extensive analysis of the literature, proposes a unifying framework for system accountability benchmark for formal audits of artificial intelligence-based decision-aiding systems in public policy as well as system cards that serve as scorecards presenting the outcomes of such audits. The benchmark consists of 50 criteria organized within a four by four matrix consisting of the dimensions of (i) data, (ii) model, (iii) code, (iv) system and (a) development, (b) assessment, (c) mitigation, (d) assurance. Each criterion is described and discussed alongside a suggested measurement scale indicating whether the evaluations are to be performed by humans or computers and whether the evaluation outcomes are binary or on an ordinal scale. The proposed system accountability benchmark reflects the state-of-the-art developments for accountable systems, serves as a checklist for future algorithm audits, and paves the way for sequential work as future research.

          Related collections

          Author and article information

          01 March 2022


          Custom metadata
          cs.CY cs.AI

          Applied computer science,Artificial intelligence
          Applied computer science, Artificial intelligence


          Comment on this article