133
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure-Based Design of Inhibitors of Protein–Protein Interactions: Mimicking Peptide Binding Epitopes

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.

          Related collections

          Most cited references480

          • Record: found
          • Abstract: found
          • Article: not found

          Hyperfine-Shifted 13C and 15N NMR Signals from Clostridium pasteurianum Rubredoxin: Extensive Assignments and Quantum Chemical Verification

          Stable isotope-labeling methods, coupled with novel techniques for detecting fast-relaxing NMR signals, now permit detailed investigations of paramagnetic centers of metalloproteins. We have utilized these advances to carry out comprehensive assignments of the hyperfine-shifted 13C and 15N signals of the rubredoxin from Clostridium pasteurianum (CpRd) in both its oxidized and reduced states. We used residue-specific labeling (by chemical synthesis) and residue-type-selective labeling (by biosynthesis) to assign signals detected by one-dimensional 15N NMR spectroscopy, to nitrogen atoms near the iron center. We refined and extended these 15N assignments to the adjacent carbonyl carbons by means of one-dimensional 13C[15N] decoupling difference experiments. We collected paramagnetic-optimized SuperWEFT 13C[13C] constant time COSY (SW-CT-COSY) data to complete the assignment of 13C signals of reduced CpRd. By following these 13C signals as the protein was gradually oxidized, we transferred these assignments to carbons in the oxidized state. We have compared these assignments with hyperfine chemical shifts calculated from available X-ray structures of CpRd in its oxidized and reduced forms. The results allow the evaluation of the X-ray structural models as representative of the solution structure of the protein, and they provide a framework for future investigation of the active site of this protein. The methods developed here should be applicable to other proteins that contain a paramagnetic center with high spin and slow electron exchange.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Binding of hepatitis C virus to CD81.

            Chronic hepatitis C virus (HCV) infection occurs in about 3 percent of the world's population and is a major cause of liver disease. HCV infection is also associated with cryoglobulinemia, a B lymphocyte proliferative disorder. Virus tropism is controversial, and the mechanisms of cell entry remain unknown. The HCV envelope protein E2 binds human CD81, a tetraspanin expressed on various cell types including hepatocytes and B lymphocytes. Binding of E2 was mapped to the major extracellular loop of CD81. Recombinant molecules containing this loop bound HCV and antibodies that neutralize HCV infection in vivo inhibited virus binding to CD81 in vitro.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Core structure of gp41 from the HIV envelope glycoprotein.

              The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) consists of a complex of gp120 and gp41. gp120 determines viral tropism by binding to target-cell receptors, while gp41 mediates fusion between viral and cellular membranes. Previous studies identified an alpha-helical domain within gp41 composed of a trimer of two interacting peptides. The crystal structure of this complex, composed of the peptides N36 and C34, is a six-helical bundle. Three N36 helices form an interior, parallel coiled-coil trimer, while three C34 helices pack in an oblique, antiparallel manner into highly conserved, hydrophobic grooves on the surface of this trimer. This structure shows striking similarity to the low-pH-induced conformation of influenza hemagglutinin and likely represents the core of fusion-active gp41. Avenues for the design/discovery of small-molecule inhibitors of HIV infection are directly suggested by this structure.
                Bookmark

                Author and article information

                Journal
                Angew Chem Int Ed Engl
                Angew. Chem. Int. Ed. Engl
                anie
                Angewandte Chemie (International Ed. in English)
                WILEY-VCH Verlag (Weinheim )
                1433-7851
                1521-3773
                27 July 2015
                26 June 2015
                : 54
                : 31
                : 8896-8927
                Affiliations
                Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail: tom.grossmann@ 123456cgc.mpg.de
                TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Strasse 6, 44227 Dortmund (Germany)
                Author notes
                [[+]]

                These authors contributed equally to this work.

                Article
                10.1002/anie.201412070
                4557054
                26119925
                a80b0630-4d67-4eaa-ab8a-845cca4b4451
                © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
                History
                : 16 December 2014
                Categories
                Review
                Protein–Protein Interactions

                Chemistry
                inhibitors,peptides,peptidomimetics,protein–protein interactions
                Chemistry
                inhibitors, peptides, peptidomimetics, protein–protein interactions

                Comments

                Comment on this article