22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting the refractive outcome and accuracy of IOL power calculation after phacoemulsification using the SRK/T formula with ultrasound biometry in medium axial lengths

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To evaluate the accuracy of the SRK/T formula using ultrasound (US) biometry in predicting a target postoperative refraction of ±1.00D in eyes with medium axial length (AL) that underwent phacoemulsification.

          Methods

          The present study was a retrospective analysis, which included 538 eyes with an AL from 22.0 to 24.60 mm that underwent phacoemulsification and foldable intraocular lens (IOL) implantation (six different IOLs) in the bag. Preoperative AL was measured by US biometry and IOL power (IOLp) was calculated with the SRK/T formula. Patients had a complete ophthalmic examination, preoperatively and 1, 7, and 30 days after surgery. The achieved spherical equivalent (SE) and the prediction error (PE) were calculated. The prediction error was defined as the difference between attempted predicted target refraction and the achieved postoperative SE refraction. Statistical analysis was performed with SPSS V21.

          Results

          The mean age of the patients was 66.96±9.67 years, the mean AL was 23.29±0.62 mm, the mean K1 was 43.62±1.49D, the mean K2 was 43.69±1.53D, the mean IOL power was 21.066±1.464D, the mean attempted (predicted) SE was −0.178±0.266D, and the mean achieved SE was −0.252±0.562D. The mean PE (difference between predicted and achieved SE) showed a relatively hyperopic shift (mean ± standard deviation: 0.074±0.542D, ranging from −1.855 to 2.170D, P=0.001). A total of 93.87% of eyes were within ±1.00D of the PE and 92.75% of eyes within ±1.00D of achieved postoperative refraction. A total of 39 eyes (7.25%) had a refractive surprise. A total of 32 of 39 eyes were more myopic than −1.00D and 7 of them were more hypermetropic than +1.00D. There was no correlation between the mean PE and IOL type, AL, K1, K2, and IOLp. There were a positive statistically significant correlation between PE and age ( r=0.095; P=0.028) and a negative statistically significant correlation between achieved SE and AL (Spearman’s r=−0.125; P=0.04), and age ( r=−0.141; P=0.01).

          Conclusion

          The IOLp calculation using the SRK/T formula with US biometry may demonstrate very good postoperative refractive outcomes in medium eyes with a few refractive surprises.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Sources of error in intraocular lens power calculation.

          To identify and quantify sources of error in the refractive outcome of cataract surgery. AMO Groningen BV, Groningen, The Netherlands. Means and standard deviations (SDs) of parameters that influence refractive outcomes were taken or derived from the published literature to the extent available. To evaluate their influence on refraction, thick-lens ray tracing that allowed for asphericity was used. The numerical partial derivative of each parameter with respect to spectacle refraction was calculated. The product of the partial derivative and the SD for a parameter equates to its SD, expressed as spectacle diopters, which squared is the variance. The error contribution of a parameter is its variance relative to the sum of the variances of all parameters. Preoperative estimation of postoperative intraocular lens (IOL) position, postoperative refraction determination, and preoperative axial length (AL) measurement were the largest contributors of error (35%, 27%, and 17%, respectively), with a mean absolute error (MAE) of 0.6 diopter (D) for an eye of average dimensions. Pupil size variation in the population accounted for 8% of the error, and variability in IOL power, 1%. Improvement in refractive outcome requires better methods for predicting the postoperative IOL position. Measuring AL by partial coherence interferometry may be of benefit. Autorefraction increases precision in outcome measurement. Reducing these 3 major error sources with means available today reduces the MAE to 0.4 D. Using IOLs that compensate for the spherical aberration of the cornea would eliminate the influence of pupil size. Further improvement would require measuring the asphericity of the anterior surface and radius of the posterior surface of the cornea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis.

            The precision of intraocular lens (IOL) calculation is essentially determined by the accuracy of the measurement of axial length. In addition to classical ultrasound biometry, partial coherence interferometry serves as a new optical method for axial length determination. A functional prototype from Carl Zeiss Jena implementing this principle was compared with immersion ultrasound biometry in our laboratory. In 108 patients attending the biometry laboratory for planning of cataract surgery, axial lengths were additionally measured optically. Whereas surgical decisions were based on ultrasound data, we used postoperative refraction measurements to calculate retrospectively what results would have been obtained if optical axial length data had been used for IOL calculation. For the translation of optical to geometrical lengths, five different conversion formulas were used, among them the relation which is built into the Zeiss IOL-Master. IOL calculation was carried out according to Haigis with and without optimization of constants. On the basis of ultrasound immersion data from our Grieshaber Biometric System (GBS), postoperative refraction after implantation of a Rayner IOL type 755 U was predicted correctly within +/- 1 D in 85.7% and within +/- 2 D in 99% of all cases. An analogous result was achieved with optical axial length data after suitable transformation of optical path lengths into geometrical distances. Partial coherence interferometry is a noncontact, user- and patient-friendly method for axial length determination and IOL planning with an accuracy comparable to that of high-precision immersion ultrasound.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Hoffer Q formula: a comparison of theoretic and regression formulas.

              A new formula, the Hoffer Q, was developed to predict the pseudophakic anterior chamber depth (ACD) for theoretic intraocular lens (IOL) power formulas. It relies on a personalized ACD, axial length, and corneal curvature. In 180 eyes, the Q formula proved more accurate than those using a constant ACD (P < .0001) and equal (P = .63) to those using the actual postoperative measured ACD (which is not possible clinically). In 450 eyes of one style IOL implanted by one surgeon, the Hoffer Q formula was equal to the Holladay (P = .65) and SRK/T (P = .63) and more accurate than the SRK (P < .0001) and SRK II (P = .004) regression formulas using optimized personalization constants. The Hoffer Q formula may be clinically more accurate than the Holladay and SRK/T formulas in eyes shorter than 22.0 mm. Even the original nonpersonalized constant ACD Hoffer formula compared with SRK I (using the most valid possible optimized personal A-constant) has a better mean absolute error (0.56 versus 0.59) and a significantly better range of IOL prediction error (3.44 diopters [D] versus 7.31 D). The range of error of the Hoffer Q formula (3.59 D) was half that of SRK I (7.31 D). The highest IOL power errors in the 450 eyes were in the SRK II (3.14 D) and SRK I (6.14 D); the power error was 2.08 D using the Hoffer Q formula. The series using overall personalized ACD was more accurate than using an axial length subgroup personalized ACD in each axial length subgroup. The results strongly support replacing regression formulas with third-generation personalized theoretic formulas and carefully evaluating the Holladay, SRK/T, and Hoffer Q formulas.
                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                Clinical Ophthalmology
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove Medical Press
                1177-5467
                1177-5483
                2017
                15 June 2017
                : 11
                : 1143-1149
                Affiliations
                [1 ]Department of Ophthalmology, Istanbul Medipol University, Esenler Hospital, Esenler
                [2 ]Department of Ophthalmology, Istanbul Medipol University, Kadıkoy Medipol Hospital, Kadıkoy
                [3 ]Department of Ophthalmology, Istanbul Medipol University, Mega Medipol Hospital, Bagcilar
                [4 ]Department of Ophthalmology, Nisa Hospital, Bahcelievler, Istanbul, Turkey
                Author notes
                Correspondence: Yunus Karabela, Department of Ophthalmology, Istanbul Medipol University, Esenler Hospital, Birlik Mahallesi, Bahceler Caddesi, Number 5, Esenler 34230, Istanbul, Turkey, Tel +90 212 440 1000, Fax +90 212 440 1010, Email mrsbela@ 123456yahoo.com
                Article
                opth-11-1143
                10.2147/OPTH.S136882
                5479261
                28670106
                a8114e76-6622-40d8-8123-6a07c8dcd6cb
                © 2017 Karabela et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Ophthalmology & Optometry
                axial length,biometry,cataract surgery,iol power calculation,prediction error,srk/t formula

                Comments

                Comment on this article