2,257
views
0
recommends
+1 Recommend
0 collections
    17
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Surviving Sepsis Campaign : International Guidelines for Management of Severe Sepsis and Septic Shock

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Some recommendations were ungraded (UG). Recommendations were classified into three groups: 1) those directly targeting severe sepsis; 2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and 3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 hr of recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 hrs of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1C); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients) (1C); fluid challenge technique continued as long as hemodynamic improvement, as based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥ 65 mm Hg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO2/FIO2 ratio of ≤ 100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 hrs) for patients with early ARDS and a Pao2/Fio2 < 150 mm Hg (2C); a protocolized approach to blood glucose management commencing insulin dosing when two consecutive blood glucose levels are > 180 mg/dL, targeting an upper blood glucose ≤ 180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 hrs after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 hrs of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5 to 10 mins (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

          Related collections

          Most cited references 406

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.

          In patients with the acute respiratory distress syndrome, massive alveolar collapse and cyclic lung reopening and overdistention during mechanical ventilation may perpetuate alveolar injury. We determined whether a ventilatory strategy designed to minimize such lung injuries could reduce not only pulmonary complications but also mortality at 28 days in patients with the acute respiratory distress syndrome. We randomly assigned 53 patients with early acute respiratory distress syndrome (including 28 described previously), all of whom were receiving identical hemodynamic and general support, to conventional or protective mechanical ventilation. Conventional ventilation was based on the strategy of maintaining the lowest positive end-expiratory pressure (PEEP) for acceptable oxygenation, with a tidal volume of 12 ml per kilogram of body weight and normal arterial carbon dioxide levels (35 to 38 mm Hg). Protective ventilation involved end-expiratory pressures above the lower inflection point on the static pressure-volume curve, a tidal volume of less than 6 ml per kilogram, driving pressures of less than 20 cm of water above the PEEP value, permissive hypercapnia, and preferential use of pressure-limited ventilatory modes. After 28 days, 11 of 29 patients (38 percent) in the protective-ventilation group had died, as compared with 17 of 24 (71 percent) in the conventional-ventilation group (P<0.001). The rates of weaning from mechanical ventilation were 66 percent in the protective-ventilation group and 29 percent in the conventional-ventilation group (P=0.005): the rates of clinical barotrauma were 7 percent and 42 percent, respectively (P=0.02), despite the use of higher PEEP and mean airway pressures in the protective-ventilation group. The difference in survival to hospital discharge was not significant; 13 of 29 patients (45 percent) in the protective-ventilation group died in the hospital, as compared with 17 of 24 in the conventional-ventilation group (71 percent, P=0.37). As compared with conventional ventilation, the protective strategy was associated with improved survival at 28 days, a higher rate of weaning from mechanical ventilation, and a lower rate of barotrauma in patients with the acute respiratory distress syndrome. Protective ventilation was not associated with a higher rate of survival to hospital discharge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial.

            Approaches to removal of sedation and mechanical ventilation for critically ill patients vary widely. Our aim was to assess a protocol that paired spontaneous awakening trials (SATs)-ie, daily interruption of sedatives-with spontaneous breathing trials (SBTs). In four tertiary-care hospitals, we randomly assigned 336 mechanically ventilated patients in intensive care to management with a daily SAT followed by an SBT (intervention group; n=168) or with sedation per usual care plus a daily SBT (control group; n=168). The primary endpoint was time breathing without assistance. Data were analysed by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00097630. One patient in the intervention group did not begin their assigned treatment protocol because of withdrawal of consent and thus was excluded from analyses and lost to follow-up. Seven patients in the control group discontinued their assigned protocol, and two of these patients were lost to follow-up. Patients in the intervention group spent more days breathing without assistance during the 28-day study period than did those in the control group (14.7 days vs 11.6 days; mean difference 3.1 days, 95% CI 0.7 to 5.6; p=0.02) and were discharged from intensive care (median time in intensive care 9.1 days vs 12.9 days; p=0.01) and the hospital earlier (median time in the hospital 14.9 days vs 19.2 days; p=0.04). More patients in the intervention group self-extubated than in the control group (16 patients vs six patients; 6.0% difference, 95% CI 0.6% to 11.8%; p=0.03), but the number of patients who required reintubation after self-extubation was similar (five patients vs three patients; 1.2% difference, 95% CI -5.2% to 2.5%; p=0.47), as were total reintubation rates (13.8%vs 12.5%; 1.3% difference, 95% CI -8.6% to 6.1%; p=0.73). At any instant during the year after enrolment, patients in the intervention group were less likely to die than were patients in the control group (HR 0.68, 95% CI 0.50 to 0.92; p=0.01). For every seven patients treated with the intervention, one life was saved (number needed to treat was 7.4, 95% CI 4.2 to 35.5). Our results suggest that a wake up and breathe protocol that pairs daily spontaneous awakening trials (ie, interruption of sedatives) with daily spontaneous breathing trials results in better outcomes for mechanically ventilated patients in intensive care than current standard approaches and should become routine practice.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care

                Bookmark

                Author and article information

                Journal
                Critical Care Medicine
                Critical Care Medicine
                Ovid Technologies (Wolters Kluwer Health)
                0090-3493
                2013
                February 2013
                : 41
                : 2
                : 580-637
                Article
                10.1097/CCM.0b013e31827e83af
                23353941
                © 2013

                Comments

                Comment on this article

                Similar content 891

                Cited by 1,385

                Most referenced authors 9,168