3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adenylation and S-methylation of cysteine by the bifunctional enzyme TioN in thiocoraline biosynthesis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The antitumor agent thiocoraline is a nonribosomally biosynthesized bisintercalator natural product, which contains in its peptidic backbone two S-methylated l-cysteine residues. S-Methylation occurs very rarely in nature, and is observed extremely rarely in nonribosomal peptide scaffolds. We have proposed that during thiocoraline biosynthesis, TioN, a stand-alone adenylation domain interrupted by the S-adenosyl-l-methionine binding region of a methyltransferase enzyme, is capable of performing two functions: the adenylation and S-methylation of l-cysteine. Herein, by preparation of knockouts of TioN and its MbtH-like protein partner TioT, we confirmed their role in thiocoraline biosynthesis. We also co-expressed recombinant TioN and TioT and biochemically investigated three potential pathways involving activation, methylation, and loading of l-cysteine onto the TioN partner thiolation domain, TioS(T4). The valuable insights gained into the pathway(s) followed for the production of S-Me-l-Cys-S-TioS(T4) will serve as a guide for the development of novel engineered interrupted adenylation enzymes for combinatorial biosynthesis.

          Related collections

          Author and article information

          Journal
          J. Am. Chem. Soc.
          Journal of the American Chemical Society
          American Chemical Society (ACS)
          1520-5126
          0002-7863
          Dec 10 2014
          : 136
          : 49
          Affiliations
          [1 ] Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States.
          Article
          10.1021/ja510489j
          25409494
          a81922d2-ea96-464d-9c1a-bda6ef7702ed
          History

          Comments

          Comment on this article