67
views
0
recommends
+1 Recommend
2 collections
    2
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      To learn more about AK Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phage therapy in lung infections caused by multidrug-resistant Pseudomonas aeruginosa – A literature review

      review-article
      , , * ,
      European Journal of Microbiology & Immunology
      Akadémiai Kiadó
      phages, lysins, Pseudomonas aeruginosa, lung infections, host-pathogen interactions, multidrug-resistant bacteria

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pulmonary infections of patients with cystic fibrosis (CF) or in intensive care units are frequently caused by the Gram-negative opportunistic pathogen Pseudomonas aeruginosa. Since these bacteria are commonly inherently multidrug-resistant (MDR) and hence, antibiotic treatment options are limited, bacteriophages may provide alternative therapeutic and prophylactic measures in the combat of pneumonia caused by P. aeruginosa. This prompted us to perform a comprehensive literature survey of current knowledge regarding effects of phages applied against pulmonary P. aeruginosa infections. The included 23 studies revealed that P. aeruginosa specific phages lyse and eliminate the bacteria even in case of biofilm production in vitro, whereas application to mice and men resulted in mitigated P. aeruginosa induced clinical signs and enhanced survival. Besides distinct host immune responses, no major adverse effects limiting therapeutic and/or prophylactic phage application were noted. However, the immune system and antibiotics generate synergies with phages due to the mutable sensitivity of P. aeruginosa. In conclusion, results summarized in this review provide evidence that phages constitute promising alternative treatment options for lung infections caused by MDR P. aeruginosa. Further studies are needed, however, to underscore the efficacy and safety aspects of phages application to infected patients including immune-compromised individuals.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Pros and cons of phage therapy.

          Many publications list advantages and disadvantages associated with phage therapy, which is the use of bacterial viruses to combat populations of nuisance or pathogenic bacteria. The goal of this commentary is to discuss many of those issues in a single location. In terms of "Pros," for example, phages can be bactericidal, can increase in number over the course of treatment, tend to only minimally disrupt normal flora, are equally effective against antibiotic-sensitive and antibiotic-resistant bacteria, often are easily discovered, seem to be capable of disrupting bacterial biofilms, and can have low inherent toxicities. In addition to these assets, we consider aspects of phage therapy that can contribute to its safety, economics, or convenience, but in ways that are perhaps less essential to the phage potential to combat bacteria. For example, autonomous phage transfer between animals during veterinary application could provide convenience or economic advantages by decreasing the need for repeated phage application, but is not necessarily crucial to therapeutic success. We also consider possible disadvantages to phage use as antibacterial agents. These "Cons," however, tend to be relatively minor.
            • Record: found
            • Abstract: found
            • Article: not found

            Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen.

            The rise of multi-drug-resistant (MDR) bacteria has spurred renewed interest in the use of bacteriophages in therapy. However, mechanisms contributing to phage-mediated bacterial clearance in an animal host remain unclear. We investigated the effects of host immunity on the efficacy of phage therapy for acute pneumonia caused by MDR Pseudomonas aeruginosa in a mouse model. Comparing efficacies of phage-curative and prophylactic treatments in healthy immunocompetent, MyD88-deficient, lymphocyte-deficient, and neutrophil-depleted murine hosts revealed that neutrophil-phage synergy is essential for the resolution of pneumonia. Population modeling of in vivo results further showed that neutrophils are required to control both phage-sensitive and emergent phage-resistant variants to clear infection. This "immunophage synergy" contrasts with the paradigm that phage therapy success is largely due to bacterial permissiveness to phage killing. Lastly, therapeutic phages were not cleared by pulmonary immune effector cells and were immunologically well tolerated by lung tissues.
              • Record: found
              • Abstract: found
              • Article: not found

              Bacteriophage therapy.

              In 1917, bacteriophages were recognized as epizootic infections of bacteria and were almost immediately deployed for antibacterial therapy and prophylaxis. The early trials of bacteriophage therapy for infectious diseases were confounded, however, because the biological nature of bacteriophage was poorly understood. The early literature reviewed here indicates that there are good reasons to believe that phage therapy can be effective in some circumstances. The advent of antibiotics, together with the "Soviet taint" acquired by phage therapy in the postwar period, resulted in the absence of rigorous evaluations of phage therapy until very recently. Recent laboratory and animal studies, exploiting current understandings of phage biology, suggest that phages may be useful as antibacterial agents in certain conditions.

                Author and article information

                Contributors
                Journal
                Eur J Microbiol Immunol (Bp)
                Eur J Microbiol Immunol (Bp)
                EUJMI
                European Journal of Microbiology & Immunology
                Akadémiai Kiadó (Budapest )
                2062-509X
                2062-8633
                23 January 2024
                March 2024
                : 14
                : 1
                : 1-12
                Affiliations
                [1]Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
                Author notes
                [* ]Corresponding author. Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases, and Immunology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin , Hindenburgdamm 30, 12203, Berlin, Germany. Tel.: +49 30 450524318. E-mail: markus.heimesaat@ 123456charite.de
                Author information
                https://orcid.org/0000-0001-6399-651X
                Article
                10.1556/1886.2023.00060
                10895363
                38261031
                a81fba96-c777-4f56-b114-c918af4945fd
                © 2024 The Author(s)

                Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated.

                History
                : 21 December 2023
                : 10 January 2024
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 35, Pages: 12
                Categories
                Article

                phages,lysins,pseudomonas aeruginosa,lung infections,host-pathogen interactions,multidrug-resistant bacteria

                Comments

                Comment on this article

                Related Documents Log