12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone-Targeting Liposome-Encapsulated Salvianic Acid A Improves Nonunion Healing Through the Regulation of HDAC3-Mediated Endochondral Ossification

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          Nonunion is a major complication in fracture repair and remains a challenge in orthopaedics and trauma surgery. In this study, we aimed to evaluate the effectiveness of treatment of nonunion with a large radial defect using a bone-targeting liposome-encapsulated salvianic acid A (SAA-BTL)-incorporated collagen sponge and further elucidate whether the effects were closely related to histone deacetylase 3 (HDAC 3)-mediated endochondral ossification in nonunion healing process.

          Methods

          Fifteen New Zealand female rabbits were randomly divided into three groups. Segmental radius critical size defects (15 mm) were created via surgery on both the forelimbs of the rabbits. The SAA-BTL/SAA/saline-incorporated collagen sponges were implanted into the defects in the three groups, respectively, for four weeks of treatment. X-ray imaging, micro-computed tomography (CT) analysis, histology, and immunofluorescence analysis (HDAC3, collagen II, VEGFA, and osteocalcin) were performed to determine the effects of the treatments. In addition, a short interfering RNA was applied to induce HDAC3 knockdown in the chondrogenic cell line ATDC5 to investigate the roles of HDAC3 and SAA intervention in endochondral ossification in nonunion healing.

          Results

          X-ray imaging and micro-CT results revealed that SAA-BTL-incorporated collagen sponges significantly stimulated bone formation in the nonunion defect rabbit model. Furthermore, immunofluorescence double staining and histology analysis confirmed that SAA-BTL significantly increased the expression of P-HDAC3, collagen II, RUNX2, VEGFA, and osteocalcin in vivo; accelerated endochondral ossification turnover from cartilage to bone; and promoted long bone healing of nonunion defects. ATDC5 cells knocked down for HDAC3 showed significantly decreased expression of HDAC3, which resulted in reduced expression of chondrogenesis, osteogenesis, and angiogenesis biomarker genes (Sox9, Col10a1, VEGFA, RUNX2, and Col1a1), and increased expression of extracellular matrix degradation marker (MMP13). SAA treatment reversed these effects in the HDAC3 knockdown cell model.

          Conclusion

          SAA-BTL can improve nonunion healing through the regulation of HDAC3-mediated endochondral ossification.

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of fracture healing.

          The biology of fracture healing is a complex biological process that follows specific regenerative patterns and involves changes in the expression of several thousand genes. Although there is still much to be learned to fully comprehend the pathways of bone regeneration, the over-all pathways of both the anatomical and biochemical events have been thoroughly investigated. These efforts have provided a general understanding of how fracture healing occurs. Following the initial trauma, bone heals by either direct intramembranous or indirect fracture healing, which consists of both intramembranous and endochondral bone formation. The most common pathway is indirect healing, since direct bone healing requires an anatomical reduction and rigidly stable conditions, commonly only obtained by open reduction and internal fixation. However, when such conditions are achieved, the direct healing cascade allows the bone structure to immediately regenerate anatomical lamellar bone and the Haversian systems without any remodelling steps necessary. In all other non-stable conditions, bone healing follows a specific biological pathway. It involves an acute inflammatory response including the production and release of several important molecules, and the recruitment of mesenchymal stem cells in order to generate a primary cartilaginous callus. This primary callus later undergoes revascularisation and calcification, and is finally remodelled to fully restore a normal bone structure. In this article we summarise the basic biology of fracture healing. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.

            Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs binding on chromatin and find that both are found at active genes with acetylated histones. Our data provide evidence that HATs and HDACs are both targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Furthermore, the majority of HDACs in the human genome function to reset chromatin by removing acetylation at active genes. Inactive genes that are primed by MLL-mediated histone H3K4 methylation are subject to a dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding, preventing Pol II from binding to these genes but poising them for future activation. Silent genes without any H3K4 methylation signal show no evidence of being bound by HDACs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fracture healing under healthy and inflammatory conditions.

              Optimal fracture treatment requires knowledge of the complex physiological process of bone healing. The course of bone healing is mainly influenced by fracture fixation stability (biomechanics) and the blood supply to the healing site (revascularization after trauma). The repair process proceeds via a characteristic sequence of events, described as the inflammatory, repair and remodeling phases. An inflammatory reaction involving immune cells and molecular factors is activated immediately in response to tissue damage and is thought to initiate the repair cascade. Immune cells also have a major role in the repair phase, exhibiting important crosstalk with bone cells. After bony bridging of the fragments, a slow remodeling process eventually leads to the reconstitution of the original bone structure. Systemic inflammation, as observed in patients with rheumatoid arthritis, diabetes mellitus, multiple trauma or sepsis, can increase fracture healing time and the rate of complications, including non-unions. In addition, evidence suggests that insufficient biomechanical conditions within the fracture zone can influence early local inflammation and impair bone healing. In this Review, we discuss the main factors that influence fracture healing, with particular emphasis on the role of inflammation.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                26 August 2020
                2020
                : 14
                : 3519-3533
                Affiliations
                [1 ]Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical University , Zhanjiang, Guangdong 524023, People’s Republic of China
                [2 ]Department of Orthopaedics, Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong 524001, People’s Republic of China
                [3 ]Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, People’s Republic of China
                [4 ]School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, Guangdong Province, People’s Republic of China
                Author notes
                Correspondence : Yanzhi Liu Email liuyanzhi02@163.com
                Yuyu Liu Email liuyuyu77@163.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-9433-0785
                http://orcid.org/0000-0002-3328-7007
                Article
                263787
                10.2147/DDDT.S263787
                7502027
                a824aa9c-ee74-4780-a27e-f6e98d698c6c
                © 2020 Zhou et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 22 May 2020
                : 05 August 2020
                Page count
                Figures: 8, Tables: 3, References: 43, Pages: 15
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                nonunion,fracture,hdac3,endochondral ossification,bone-targeting liposome,salvianic acid a

                Comments

                Comment on this article