15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evolutionary history of the angiosperm flora of China

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preserving the evolutionary potential of floras in biodiversity hotspots.

            One of the biggest challenges for conservation biology is to provide conservation planners with ways to prioritize effort. Much attention has been focused on biodiversity hotspots. However, the conservation of evolutionary process is now also acknowledged as a priority in the face of global change. Phylogenetic diversity (PD) is a biodiversity index that measures the length of evolutionary pathways that connect a given set of taxa. PD therefore identifies sets of taxa that maximize the accumulation of 'feature diversity'. Recent studies, however, concluded that taxon richness is a good surrogate for PD. Here we show taxon richness to be decoupled from PD, using a biome-wide phylogenetic analysis of the flora of an undisputed biodiversity hotspot--the Cape of South Africa. We demonstrate that this decoupling has real-world importance for conservation planning. Finally, using a database of medicinal and economic plant use, we demonstrate that PD protection is the best strategy for preserving feature diversity in the Cape. We should be able to use PD to identify those key regions that maximize future options, both for the continuing evolution of life on Earth and for the benefit of society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              treePL: divergence time estimation using penalized likelihood for large phylogenies.

              Ever larger phylogenies are being constructed due to the explosion of genetic data and development of high-performance phylogenetic reconstruction algorithms. However, most methods for calculating divergence times are limited to datasets that are orders of magnitude smaller than recently published large phylogenies. Here, we present an algorithm and implementation of a divergence time method using penalized likelihood that can handle datasets of thousands of taxa. We implement a method that combines the standard derivative-based optimization with a stochastic simulated annealing approach to overcome optimization challenges. We compare this approach with existing software including r8s, PATHd8 and BEAST. Source code, example files, binaries and documentation for treePL are available at https://github.com/blackrim/treePL.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                January 31 2018
                January 31 2018
                : 554
                : 7691
                : 234-238
                Article
                10.1038/nature25485
                29420476
                a82abe18-0121-44d9-a44a-5f7ea7c56944
                © 2018
                History

                Comments

                Comment on this article