3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Peptide Inhibitors for Lactate Dehydrogenase A (LDHA): A Survey to Inhibit LDHA Activity via Disruption of Protein-Protein Interaction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactate dehydrogenase A (LDHA) is a critical metabolic enzyme belonging to a family of 2-hydroxy acid oxidoreductases that plays a key role in anaerobic metabolism in the cells. In hypoxia condition, the overexpression of LDHA shifts the metabolic pathway of ATP synthesis from oxidative phosphorylation to aerobic glycolysis and the hypoxia condition is a common phenomenon occurred in the microenvironment of tumor cells; therefore, the inhibition of LDHA is considered to be an excellent strategy for cancer therapy. In this study, we employed in silico methods to design inhibitory peptides for lactate dehydrogenase through the disturbance in tetramerization of the enzyme. Using peptide as an anti-cancer agent is a novel approach for cancer therapy possessing some advantages with respect to the chemotherapeutic drugs such as low toxicity, ease of synthesis, and high target specificity. So peptides can act as appropriate enzyme inhibitor in parallel to chemical compounds. In this study, several computational techniques such as molecular dynamics (MD) simulation, docking and MM-PBSA calculation have been employed to investigate the structural characteristics of the monomer, dimer, and tetramer forms of the enzyme. Analysis of MD simulation and protein-protein interaction showed that the N-terminal arms of each subunit have an important role in enzyme tetramerization to establish active form of the enzyme. Hence, N-terminal arm can be used as a template for peptide design. Then, peptides were designed and evaluated to obtain best binders based on the affinity and physicochemical properties. Finally, the inhibitory effect of the peptides on subunit association was measured by dynamic light scattering (DLS) technique. Our results showed that the designed peptides which mimic the N-terminal arm of the enzyme can successfully target the C-terminal domain and interrupt the bona fide form of the enzyme subunits. The result of this study makes a new avenue to disrupt the assembly process and thereby oppress the function of the LDHA.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          MMPBSA.py: An Efficient Program for End-State Free Energy Calculations.

          MM-PBSA is a post-processing end-state method to calculate free energies of molecules in solution. MMPBSA.py is a program written in Python for streamlining end-state free energy calculations using ensembles derived from molecular dynamics (MD) or Monte Carlo (MC) simulations. Several implicit solvation models are available with MMPBSA.py, including the Poisson-Boltzmann Model, the Generalized Born Model, and the Reference Interaction Site Model. Vibrational frequencies may be calculated using normal mode or quasi-harmonic analysis to approximate the solute entropy. Specific interactions can also be dissected using free energy decomposition or alanine scanning. A parallel implementation significantly speeds up the calculation by dividing frames evenly across available processors. MMPBSA.py is an efficient, user-friendly program with the flexibility to accommodate the needs of users performing end-state free energy calculations. The source code can be downloaded at http://ambermd.org/ with AmberTools, released under the GNU General Public License.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide.

            The rate constant for the transition between the equatorial and axial conformations of N-acetylalanyl-N'-methylamide has been determined from Langevin dynamics (LD) simulations with no explicit solvent. The isomerization rate is maximum at collision frequency gamma = 2 ps-1, shows diffusive character for gamma greater than or equal to 10 ps-1, but does not approach zero even at gamma = 0.01 ps-1. This behavior differs from that found for a one-dimensional bistable potential and indicates that both collisional energy transfer with solvent and vibrational energy transfer between internal modes are important in the dynamics of barrier crossing for this system. It is suggested that conformational searches of peptides be carried out using LD with a collision frequency that maximizes the isomerization rate (i.e., gamma approximately 2 ps-1). This method is expected to be more efficient than either molecular dynamics in vacuo (which corresponds to LD with gamma = 0) or molecular dynamics in solvent (where dynamics is largely diffusive).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Metabolism of Carcinoma Cells

              O WARBURG (1925)
                Bookmark

                Author and article information

                Contributors
                m.ganjalikhany@sci.ui.ac.ir
                morady2008@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 March 2019
                18 March 2019
                2019
                : 9
                : 4686
                Affiliations
                [1 ]ISNI 0000 0004 0612 5912, GRID grid.412505.7, Department of Clinical Biochemistry, Faculty of Medicine, , Shahid Sadoughi University of Medical Sciences, ; Yazd, Iran
                [2 ]ISNI 0000 0001 0454 365X, GRID grid.411750.6, Department of Biology, Faculty of Sciences, , University of Isfahan, ; Isfahan, Iran
                Article
                38854
                10.1038/s41598-019-38854-7
                6423238
                30886157
                a84dce45-b992-470a-984c-734044110e10
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 August 2018
                : 11 January 2019
                Funding
                Funded by: Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Grant Reference Number is 4816
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article