Blog
About

6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Autophagy in Acute Kidney Injury and Repair

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute kidney injury (AKI) is a major kidney disease associated with a poor clinical outcome both in the short and long term. Autophagy is a cellular stress response that plays important roles in the pathogenesis of various diseases. Autophagy is induced in proximal tubules during AKI. A renoprotective role of autophagy in AKI has been demonstrated by pharmacological and genetic inhibition studies. The role of autophagy in kidney recovery and repair from AKI, however, remains largely unknown. A dynamic change in autophagy during the recovery phase of AKI seems to be important for tubular proliferation and repair. In renal fibrosis, autophagy may either promote this via the induction of tubular atrophy and decomposition, or prevent it via effects on the intracellular degradation of excessive collagen. Further research is expected to improve the understanding of the regulation of autophagy in kidney injury and repair, elucidate the pathological roles of autophagy in renal fibrosis, and discover therapeutic targets for treating AKI and preventing its progression to chronic kidney disease.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells.

          Autophagy has emerged as another major "programmed" mechanism to control life and death much like "programmed cell death" is for apoptosis in eukaryotes. We examined the expression of autophagic proteins and formation of autophagosomes during progression of cisplatin injury to renal tubular epithelial cells (RTEC). Autophagy was detected as early as 2-4 h after cisplatin exposure as indicated by induction of LC3-I, conversion of LC3-I to LC3-II protein, and upregulation of Beclin 1 and Atg5, essential markers of autophagy. The appearance of cisplatin-induced punctated staining of autophagosome-associated LC3-II upon GFP-LC3 transfection in RTEC provided further evidence for autophagy. The autophagy inhibitor 3-methyladenine blocked punctated staining of autophagosomes. The staining of normal cells with acridine orange displayed green fluorescence with cytoplasmic and nuclear components in normal cells but displayed considerable red fluorescence in cisplatin-treated cells, suggesting formation of numerous acidic autophagolysosomal vacuoles. Autophagy inhibitors LY294002 or 3-methyladenine or wortmannin inhibited the formation of autophagosomes but induced apoptosis after 2-4 h of cisplatin treatment as indicated by caspase-3/7 and -6 activation, nuclear fragmentation, and cell death. This switch from autophagy to apoptosis by autophagic inhibitors further suggests that the preapoptotic lag phase after treatment with cisplatin is mediated by autophagy. At later stages of cisplatin injury, apoptosis was also found to be associated with autophagy, as autophagic inhibitors and inactivation of autophagy proteins Beclin 1 and Atg5 enhanced activation of caspases and apoptosis. Our results demonstrate that induction of autophagy mounts an adaptive response, suppresses cisplatin-induced apoptosis, and prolongs survival of RTEC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells.

            We recently showed in a tetracycline-controlled transgenic mouse model that overexpression of transforming growth factor (TGF)-beta1 in renal tubules induces widespread peritubular fibrosis and focal degeneration of nephrons. In the present study we have analyzed the mechanisms underlying these phenomena. The initial response to tubular cell-derived TGF-beta1 consisted of a robust proliferation of peritubular cells and deposition of collagen. On sustained expression, nephrons degenerated in a focal pattern. This process started with tubular dedifferentiation and proceeded to total decomposition of tubular cells by autophagy. The final outcome was empty collapsed remnants of tubular basement membrane embedded into a dense collagenous fibrous tissue. The corresponding glomeruli survived as atubular remnants. Thus, TGF-beta1 driven autophagy may represent a novel mechanism of tubular decomposition. The fibrosis seen in between intact tubules and in areas of tubular decomposition resulted from myofibroblasts that were derived from local fibroblasts. No evidence was found for a transition of tubular cells into myofibroblasts. Neither tracing of injured tubules in electron micrographs nor genetic tagging of tubular epithelial cells revealed cells transgressing the tubular basement membrane. In conclusion, overexpression of TGF-beta1 in renal tubules in vivo induces interstitial proliferation, tubular autophagy, and fibrosis, but not epithelial-to-mesenchymal transition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of autophagy by TGF-β: emerging role in kidney fibrosis.

               Yan Ding,  Mary E Choi (2014)
              Autophagy is a highly conserved homoeostatic mechanism for cell survival under conditions of stress, and is widely implicated as an important pathway in many biological processes and diseases. In progressive kidney diseases, fibrosis represents the common pathway to end-stage kidney failure. Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine that has been established as a central mediator of kidney fibrosis. A recently emerging body of evidence from studies in renal cells in culture and experimental animal models suggests that TGF-β1 regulates autophagy and that autophagy regulates many critical aspects of normal and disease conditions associated with kidney fibrosis, such as tubulointerstitial fibrosis, glomerulosclerosis, and diabetic nephropathy. Here, we review the recent advances exploring the process of autophagy, its regulation by TGF-β1, and the implication in the pathogenesis of progressive kidney fibrosis and injury responses. Understanding the cellular and molecular bases of this process is crucial for identifying potential new diagnostic and therapeutic targets of kidney fibrosis.
                Bookmark

                Author and article information

                Journal
                NEC
                Nephron Clin Pract
                10.1159/issn.1660-2110
                Nephron Clinical Practice
                S. Karger AG
                1660-2110
                2014
                September 2014
                24 September 2014
                : 127
                : 1-4
                : 56-60
                Affiliations
                aDepartment of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, PR China; bDepartment of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Ga., USA
                Author notes
                *Zheng Dong, PhD, Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, GA 30912 (USA), E-Mail zdong@gru.edu
                Article
                363677 PMC4274769 Nephron Clin Pract 2014;127:56-60
                10.1159/000363677
                PMC4274769
                25343822
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, Pages: 5
                Categories
                Original Paper

                Cardiovascular Medicine, Nephrology

                Fibrosis, Kidney repair, Acute kidney injury, Apoptosis, Autophagy

                Comments

                Comment on this article