Plant-specific WUSCHEL-related homeobox (WOX) transcription factors are known to be involved in plant developmental processes, especially in embryogenesis. In this study, a total of thirteen WOX members were identified in the banana (Musa acuminata) genome (MaWOX) and characterized for in-silico analysis. Phylogenetic analysis revealed that these genes were divided into three clades (ancient, intermediate and modern) which reflected the evolutionary history of WOX families. Furthermore, modern clade members have shown higher variations in gene structural features and carried unique conserved motifs (motif 3 and motif 4) when compared to the members of other clades. The differential expression of all 13 MaWOX was observed in early (embryogenic cell suspension (ECS), multiplying ECS, germinating embryos, young leaflet and node of germinated plantlets) and late (unripe fruit peel and pulp, ripe fruit peel and pulp) developmental stages of banana cultivar Grand Naine. The maximum expression of MaWOX6 (18 fold) and MaWOX13 (120 fold) was found during somatic embryogenesis and in unripe fruit pulp, respectively. Moreover, numerous cis-elements responsive to drought, cold, ethylene, methyl jasmonate (MeJA), abscisic acid (ABA) and gibberellic acid (GA) were observed in all MaWOX promoter regions. The subsequent expression analysis under various abiotic stresses (cold, drought and salt) revealed maximum expression of the MaWOX3 (830 fold), MaWOX8a (30 fold) and MaWOX11b (105 fold) in salt stress. It gives evidence about their possible role in salt stress tolerance in banana. Hence, the present study provides precise information on the MaWOX gene family and their expression in various tissues and stressful environmental conditions that may help to develop climate-resilient banana plants.