4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytochemical Screening of Quaking Aspen ( Populus tremuloides) Extracts by UPLC-QTOF-MS and Evaluation of their Antimicrobial Activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The continual emergence of pathogen resistance is a recurring challenge and pushes for the development of antimicrobial compounds. Here, we investigated compounds from quaking aspen trees ( Populus tremuloides) as potential antimicrobial agents. Several extractions using different solvents were realized, and corresponding antimicrobial activity was tested against eight microorganisms. Results revealed that polar extraction solvents including water, ethanol and methanol gave the best extraction yields (>15.07%). Minimal inhibition concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC) demonstrated that water extracts had the best antimicrobial activity by a weak to moderate inhibition of growth of all eight tested microorganisms in addition to having a bactericidal effect on three of them. The quaking aspen methanol extract also displayed antimicrobial activity but to a lower level than the water extract. Ultra-performance liquid chromatography quadrupole time-of flight mass spectrometry (UPLC-QTOF-MS) analysis led to the identification of 92 compounds, mainly polyphenols in both extracts, with 22 molecules previously known for their antimicrobial properties. According to the relative abundance, 4-hydroxybenzaldehyde (5.44% in methanol extract) and kaempferol (5.03% in water extract) were the most abundant antimicrobial compounds. Among antimicrobial molecules identified, nine were from the flavonoid family. The results of our study demonstrate the interest of using quaking aspen as source of antimicrobial compounds.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial activity of flavonoids

          Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement. In addition, numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. The activity of quercetin, for example, has been at least partially attributed to inhibition of DNA gyrase. It has also been proposed that sophoraflavone G and (−)-epigallocatechin gallate inhibit cytoplasmic membrane function, and that licochalcones A and C inhibit energy metabolism. Other flavonoids whose mechanisms of action have been investigated include robinetin, myricetin, apigenin, rutin, galangin, 2,4,2′-trihydroxy-5′-methylchalcone and lonchocarpol A. These compounds represent novel leads, and future studies may allow the development of a pharmacologically acceptable antimicrobial agent or class of agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of antibacterial action of three monoterpenes.

            In the present paper, we report the antimicrobial efficacy of three monoterpenes [linalyl acetate, (+)menthol, and thymol] against the gram-positive bacterium Staphylococcus aureus and the gram-negative bacterium Escherichia coli. For a better understanding of their mechanisms of action, the capability of these three monoterpenes to damage biomembranes was evaluated by monitoring the release, following exposure to the compounds under study, of the water-soluble fluorescent marker carboxyfluorescein from unilamellar vesicles with different lipidic compositions (phosphatidylcholine, phosphatidylcholine/phosphatidylserine [9:1], phosphatidylcholine/stearylamine [9:1], and phosphatidylglycerol/cardiolipin [9:1]). Furthermore, the interaction of the terpenes tested with dimyristoylphosphatidylcholine multilamellar vesicles as model membranes was monitored by means of differential scanning calorimetry. Finally, the results were related to the relative lipophilicity and water solubility of the compounds examined. Taken together, our findings lead us to speculate that the antimicrobial effect of (+)menthol, thymol, and linalyl acetate may result, at least partially, from a perturbation of the lipid fraction of microorganism plasma membrane, resulting in alterations of membrane permeability and in leakage of intracellular materials. Besides being related to physicochemical characteristics of the drugs (such as lipophilicity and water solubility), this effect seems to be dependent on lipid composition and net surface charge of microbial membranes. Furthermore, the drugs might cross the cell membranes, penetrating into the interior of the cell and interacting with intracellular sites critical for antibacterial activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plants as source of drugs.

              This work presents a study of the importance of natural products, especially those derived from higher plants, in terms of drug development. It describes the main strategies for obtaining drugs from natural sources, fields of knowledge involved, difficulties and perspectives. It also includes a brief discussion of the specific situation in Brazil regarding the use of, trade in, and research into therapeutic resources of natural origin and the general lack of awareness of the use of potentially toxic plants, mainly in folk medicine.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                16 July 2018
                July 2018
                : 23
                : 7
                : 1739
                Affiliations
                [1 ]Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; Annabelle.St-Pierre@ 123456uqtr.ca (A.S.-P.); Dorian.Blondeau@ 123456uqtr.ca (D.B.); Andre.Lajeunesse@ 123456uqtr.ca (A.L.)
                [2 ]Innofibre, Trois-Rivières, QC G9A 5H7, Canada; julien.bley@ 123456cegeptr.qc.ca (J.B.); nathalie.bourdeau@ 123456cegeptr.qc.ca (N.B.)
                [3 ]Plant Biology Research Group, Trois-Rivières, QC G9A 5H7, Canada
                Author notes
                [* ]Correspondence: Isabel.Desgagne-Penix@ 123456uqtr.ca ; Tel.: +1-819-376-5011
                Author information
                https://orcid.org/0000-0002-4355-5503
                Article
                molecules-23-01739
                10.3390/molecules23071739
                6099928
                30013009
                a86d8ddf-bc21-40aa-bd51-6886f66fbaad
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 June 2018
                : 12 July 2018
                Categories
                Article

                quaking aspen,populus tremuloides,antimicrobial activity,uplc-qtof-ms,phenolic compounds,flavonoids

                Comments

                Comment on this article