33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated analysis of variants and pathways in genome-wide association studies using polygenic models of disease

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many common diseases are highly polygenic, modulated by a large number genetic factors with small effects on susceptibility to disease. These small effects are difficult to map reliably in genetic association studies. To address this problem, researchers have developed methods that aggregate information over sets of related genes, such as biological pathways, to identify gene sets that are enriched for genetic variants associated with disease. However, these methods fail to answer a key question: which genes and genetic variants are associated with disease risk? We develop a method based on sparse multiple regression that simultaneously identifies enriched pathways, and prioritizes the variants within these pathways, to locate additional variants associated with disease susceptibility. A central feature of our approach is an estimate of the strength of enrichment, which yields a coherent way to prioritize variants in enriched pathways. We illustrate the benefits of our approach in a genome-wide association study of Crohn's disease with ~440,000 genetic variants genotyped for ~4700 study subjects. We obtain strong support for enrichment of IL-12, IL-23 and other cytokine signaling pathways. Furthermore, prioritizing variants in these enriched pathways yields support for additional disease-association variants, all of which have been independently reported in other case-control studies for Crohn's disease.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Inflammatory bowel disease.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide association studies for complex traits: consensus, uncertainty and challenges.

              The past year has witnessed substantial advances in understanding the genetic basis of many common phenotypes of biomedical importance. These advances have been the result of systematic, well-powered, genome-wide surveys exploring the relationships between common sequence variation and disease predisposition. This approach has revealed over 50 disease-susceptibility loci and has provided insights into the allelic architecture of multifactorial traits. At the same time, much has been learned about the successful prosecution of association studies on such a scale. This Review highlights the knowledge gained, defines areas of emerging consensus, and describes the challenges that remain as researchers seek to obtain more complete descriptions of the susceptibility architecture of biomedical traits of interest and to translate the information gathered into improvements in clinical management.
                Bookmark

                Author and article information

                Journal
                21 August 2012
                Article
                1208.4400
                a87ac614-2e2c-4231-a262-82532d7e0254

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Summitted to PLoS Genetics
                q-bio.QM q-bio.GN stat.AP

                Comments

                Comment on this article