Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Introduction

      Adjuvant breast cancer therapy significantly improves survival, but overtreatment and undertreatment are major problems. Breast cancer expression profiling has so far mainly been used to identify women with a poor prognosis as candidates for adjuvant therapy but without demonstrated value for therapy prediction.

      Methods

      We obtained the gene expression profiles of 159 population-derived breast cancer patients, and used hierarchical clustering to identify the signature associated with prognosis and impact of adjuvant therapies, defined as distant metastasis or death within 5 years. Independent datasets of 76 treated population-derived Swedish patients, 135 untreated population-derived Swedish patients and 78 Dutch patients were used for validation. The inclusion and exclusion criteria for the studies of population-derived Swedish patients were defined.

      Results

      Among the 159 patients, a subset of 64 genes was found to give an optimal separation of patients with good and poor outcomes. Hierarchical clustering revealed three subgroups: patients who did well with therapy, patients who did well without therapy, and patients that failed to benefit from given therapy. The expression profile gave significantly better prognostication (odds ratio, 4.19; P = 0.007) (breast cancer end-points odds ratio, 10.64) compared with the Elston–Ellis histological grading (odds ratio of grade 2 vs 1 and grade 3 vs 1, 2.81 and 3.32 respectively; P = 0.24 and 0.16), tumor stage (odds ratio of stage 2 vs 1 and stage 3 vs 1, 1.11 and 1.28; P = 0.83 and 0.68) and age (odds ratio, 0.11; P = 0.55). The risk groups were consistent and validated in the independent Swedish and Dutch data sets used with 211 and 78 patients, respectively.

      Conclusion

      We have identified discriminatory gene expression signatures working both on untreated and systematically treated primary breast cancer patients with the potential to spare them from adjuvant therapy.

      Related collections

      Most cited references 47

      • Record: found
      • Abstract: found
      • Article: not found

      Molecular portraits of human breast tumours.

      Human breast tumours are diverse in their natural history and in their responsiveness to treatments. Variation in transcriptional programs accounts for much of the biological diversity of human cells and tumours. In each cell, signal transduction and regulatory systems transduce information from the cell's identity to its environmental status, thereby controlling the level of expression of every gene in the genome. Here we have characterized variation in gene expression patterns in a set of 65 surgical specimens of human breast tumours from 42 different individuals, using complementary DNA microarrays representing 8,102 human genes. These patterns provided a distinctive molecular portrait of each tumour. Twenty of the tumours were sampled twice, before and after a 16-week course of doxorubicin chemotherapy, and two tumours were paired with a lymph node metastasis from the same patient. Gene expression patterns in two tumour samples from the same individual were almost always more similar to each other than either was to any other sample. Sets of co-expressed genes were identified for which variation in messenger RNA levels could be related to specific features of physiological variation. The tumours could be classified into subtypes distinguished by pervasive differences in their gene expression patterns.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Gene expression profiling predicts clinical outcome of breast cancer.

        Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70-80% of patients receiving this treatment would have survived without it. None of the signatures of breast cancer gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          A gene-expression signature as a predictor of survival in breast cancer.

          A more accurate means of prognostication in breast cancer will improve the selection of patients for adjuvant systemic therapy. Using microarray analysis to evaluate our previously established 70-gene prognosis profile, we classified a series of 295 consecutive patients with primary breast carcinomas as having a gene-expression signature associated with either a poor prognosis or a good prognosis. All patients had stage I or II breast cancer and were younger than 53 years old; 151 had lymph-node-negative disease, and 144 had lymph-node-positive disease. We evaluated the predictive power of the prognosis profile using univariable and multivariable statistical analyses. Among the 295 patients, 180 had a poor-prognosis signature and 115 had a good-prognosis signature, and the mean (+/-SE) overall 10-year survival rates were 54.6+/-4.4 percent and 94.5+/-2.6 percent, respectively. At 10 years, the probability of remaining free of distant metastases was 50.6+/-4.5 percent in the group with a poor-prognosis signature and 85.2+/-4.3 percent in the group with a good-prognosis signature. The estimated hazard ratio for distant metastases in the group with a poor-prognosis signature, as compared with the group with the good-prognosis signature, was 5.1 (95 percent confidence interval, 2.9 to 9.0; P<0.001). This ratio remained significant when the groups were analyzed according to lymph-node status. Multivariable Cox regression analysis showed that the prognosis profile was a strong independent factor in predicting disease outcome. The gene-expression profile we studied is a more powerful predictor of the outcome of disease in young patients with breast cancer than standard systems based on clinical and histologic criteria. Copyright 2002 Massachusetts Medical Society
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
            [2 ]Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet and University Hospital, Stockholm, Sweden
            [3 ]Genentech, San Francisco, California, USA
            [4 ]Bristol-Myers Squibb, Princeton, New Jersey, USA
            [5 ]Regional Oncological Center, Uppsala University Hospital, Uppsala, Sweden
            [6 ]Genome Institute of Singapore, Singapore
            [7 ]Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
            [8 ]Department of Surgery Sciences, Karolinska Institutet and Hospital, Stockholm, Sweden
            Contributors
            Journal
            Breast Cancer Res
            Breast Cancer Research
            BioMed Central (London )
            1465-5411
            1465-542X
            2005
            3 October 2005
            : 7
            : 6
            : R953-R964
            1410752
            bcr1325
            16280042
            10.1186/bcr1325
            Copyright © 2005 Pawitan et al.; licensee BioMed Central Ltd.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Research Article

            Oncology & Radiotherapy

            Comments

            Comment on this article