6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gene expression microarrays and respiratory muscles.

      Respiratory Physiology & Neurobiology
      Animals, Diaphragm, physiology, Gene Expression Regulation, Humans, Muscle, Skeletal, Muscular Dystrophy, Duchenne, genetics, metabolism, Oligonucleotide Array Sequence Analysis, methods, Respiration, Artificial, Respiratory Muscles, Respiratory Physiological Phenomena

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The routine measurement of the expression of tens of thousands of gene transcripts, simultaneously, is a defining advance of the last decade which has been made possible by microarray technology. Using this very powerful approach, a pattern has emerged from a number of studies that suggest a molecular niche for the diaphragm which is quite different from that occupied by limb muscle. All indications are that this is true not only in regard to differential gene transcription patterns in healthy muscles but also in the changes in transcription occurring in association with different diseases. Furthermore, respiratory muscle mounts a rich gene expression response to a number of disturbances, be they primary genetic defects (e.g. various types of muscular dystrophies) or non-genetic perturbations (e.g. controlled mechanical ventilation). Large numbers of genes undergo altered levels of transcription, ranging from tens to hundreds (typical) to thousands. These genes are involved in diverse cellular processes, such as contraction, intermediate metabolism, oxidative stress, apoptosis and cellular adhesion. Functional groups of genes identified as having changed expression differ in many respects from one disease to another. Previously identified pathways of muscle injury and repair are often perturbed to greater extents than previously anticipated, and processes not previously suspected of having important roles in the pathophysiology of specific disorders have been identified. Elucidation of these under-appreciated molecular events may lead to novel therapeutic interventions based on disrupting the downstream adverse consequences of the primary event or facilitating events which ameliorate the injury and/or promote muscle healing.

          Related collections

          Author and article information

          Comments

          Comment on this article