18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants

      ,

      Drug Design, Development and Therapy

      Dove Medical Press

      GABA, major depressive disorder, serotonin, 5-HT

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD’s underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABA A and GABA B receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants – the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine – modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well-controlled empirical studies. In conclusion, this review suggests that the simplistic notion that MDD is caused by reduced GABA neurotransmission must be discarded in favor of a more nuanced and complex model of the role of inhibitory neurotransmission in MDD.

          Related collections

          Most cited references 141

          • Record: found
          • Abstract: found
          • Article: not found

          Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.

          This report provides histopathological evidence to support prior neuroimaging findings of decreased volume and altered metabolism in the frontal cortex in major depressive disorder. Computer-assisted three-dimensional cell counting was used to reveal abnormal cytoarchitecture in left rostral and caudal orbitofrontal and dorsolateral prefrontal cortical regions in subjects with major depression as compared to psychiatrically normal controls. Depressed subjects had decreases in cortical thickness, neuronal sizes, and neuronal and glial densities in the upper (II-IV) cortical layers of the rostral orbitofrontal region. In the caudal orbitofrontal cortex in depressed subjects, there were prominent reductions in glial densities in the lower (V-VI) cortical layers that were accompanied by small but significant decreases in neuronal sizes. In the dorsolateral prefrontal cortex of depressed subjects marked reductions in the density and size of neurons and glial cells were found in both supra- and infragranular layers. These results reveal that major depression can be distinguished by specific histopathology of both neurons and glial cells in the prefrontal cortex. Our data will contribute to the interpretation of neuroimaging findings and identification of dysfunctional neuronal circuits in major depression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.

            Reelin (RELN) is a glycoprotein secreted preferentially by cortical gamma-aminobutyric acid-ergic (GABAergic) interneurons (layers I and II) that binds to integrin receptors located on dendritic spines of pyramidal neurons or on GABAergic interneurons of layers III through V expressing the disabled-1 gene product (DAB1), a cytosolic adaptor protein that mediates RELN action. To replicate earlier findings that RELN and glutamic acid decarboxylase (GAD)(67), but not DAB1 expression, are down-regulated in schizophrenic brains, and to verify whether other psychiatric disorders express similar deficits, we analyzed, blind, an entirely new cohort of 60 postmortem brains, including equal numbers of patients matched for schizophrenia, unipolar depression, and bipolar disorder with nonpsychiatric subjects. Reelin, GAD(65), GAD(67), DAB1, and neuron-specific-enolase messenger RNAs (mRNAs) and respective proteins were measured with quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) or Western blot analyses. Reelin-positive neurons were identified by immunohistochemistry using a monoclonal antibody. Prefrontal cortex and cerebellar expression of RELN mRNA, GAD(67) protein and mRNA, and prefrontal cortex RELN-positive cells was significantly decreased by 30% to 50% in patients with schizophrenia or bipolar disorder with psychosis, but not in those with unipolar depression without psychosis when compared with nonpsychiatric subjects. Group differences were absent for DAB1,GAD(65) and neuron-specific-enolase expression implying that RELN and GAD(67) down-regulations were unrelated to neuronal damage. Reelin and GAD(67) were also unrelated to postmortem intervals, dose, duration, or presence of antipsychotic medication. The selective down-regulation of RELN and GAD(67) in prefrontal cortex of patients with schizophrenia and bipolar disorder who have psychosis is consistent with the hypothesis that these parameters are vulnerability factors in psychosis; this plus the loss of the correlation between these 2 parameters that exists in nonpsychotic subjects support the hypothesis that these changes may be liability factors underlying psychosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression.

              Measurement of cortical gamma-aminobutyric acid (GABA) and glutamate concentrations is possible using proton magnetic resonance spectroscopy. An initial report, using this technique, suggested that occipital cortex GABA concentrations are reduced in patients with major depressive disorder (MDD) relative to healthy comparison subjects. To replicate the GABA findings in a larger sample of MDD patients, to examine the clinical correlates of the GABA reductions in these subjects, and to examine other critical metabolite levels. Study for association. Academic clinical research program. The GABA measurements were made on 38 healthy control subjects and 33 depressed subjects. Occipital cortex metabolite levels were measured using proton magnetic resonance spectroscopy. The levels of occipital cortex GABA, glutamate, N-acetylaspartate, aspartate, creatine, and choline-containing compounds, along with several measures of tissue composition, were compared between the 2 groups. Depressed subjects had significantly lower occipital cortex GABA concentrations compared with healthy controls (P =.01). In addition, mean glutamate levels were significantly increased in depressed subjects compared with healthy controls (P<.001). Significant reductions in the percentage of solid tissue (P =.009) and the percentage of white matter (P =.04) in the voxel were also observed. An examination of a combined database including subjects from the original study suggests that GABA and glutamate concentrations differ among MDD subtypes. The study replicates the findings of decreased GABA concentrations in the occipital cortex of subjects with MDD. It also demonstrates that there is a change in the ratio of excitatory-inhibitory neurotransmitter levels in the cortex of depressed subjects that may be related to altered brain function. Last, the combined data set suggests that magnetic resonance spectroscopy GABA measures may serve as a biological marker for a subtype of MDD.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                19 January 2015
                : 9
                : 603-624
                Affiliations
                External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ, USA
                Author notes
                Correspondence: Alan L Pehrson, External Sourcing and Scientific Excellence, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA, Tel +1 201 350 0142, Fax +1 201 261 0623, Email apeh@ 123456lundbeck.com
                Article
                dddt-9-603
                10.2147/DDDT.S62912
                4307650
                © 2015 Pehrson and Sanchez. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Pharmacology & Pharmaceutical medicine

                5-ht, serotonin, major depressive disorder, gaba

                Comments

                Comment on this article