39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effectiveness of Seasonal Malaria Chemoprevention in Children under Ten Years of Age in Senegal: A Stepped-Wedge Cluster-Randomised Trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Seasonal Malaria Chemoprevention (SMC) with sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ), given each month during the transmission season, is recommended for children living in areas of the Sahel where malaria transmission is highly seasonal. The recommendation for SMC is currently limited to children under five years of age, but, in many areas of seasonal transmission, the burden in older children may justify extending this age limit. This study was done to determine the effectiveness of SMC in Senegalese children up to ten years of age.

          Methods and Findings

          SMC was introduced into three districts over three years in central Senegal using a stepped-wedge cluster-randomised design. A census of the population was undertaken and a surveillance system was established to record all deaths and to record all cases of malaria seen at health facilities. A pharmacovigilance system was put in place to detect adverse drug reactions. Fifty-four health posts were randomised. Nine started implementation of SMC in 2008, 18 in 2009, and a further 18 in 2010, with 9 remaining as controls. In the first year of implementation, SMC was delivered to children aged 3–59 months; the age range was then extended for the latter two years of the study to include children up to 10 years of age. Cluster sample surveys at the end of each transmission season were done to measure coverage of SMC and the prevalence of parasitaemia and anaemia, to monitor molecular markers of drug resistance, and to measure insecticide-treated net (ITN) use. Entomological monitoring and assessment of costs of delivery in each health post and of community attitudes to SMC were also undertaken. About 780,000 treatments were administered over three years. Coverage exceeded 80% each month. Mortality, the primary endpoint, was similar in SMC and control areas (4.6 and 4.5 per 1000 respectively in children under 5 years and 1.3 and 1.2 per 1000 in children 5-9 years of age; the overall mortality rate ratio [SMC: no SMC] was 0.90, 95% CI 0.68–1.2, p = 0.496). A reduction of 60% (95% CI 54%–64%, p < 0.001) in the incidence of malaria cases confirmed by a rapid diagnostic test (RDT) and a reduction of 69% (95% CI 65%–72%, p < 0.001) in the number of treatments for malaria (confirmed and unconfirmed) was observed in children. In areas where SMC was implemented, incidence of confirmed malaria in adults and in children too old to receive SMC was reduced by 26% (95% CI 18%–33%, p < 0.001) and the total number of treatments for malaria (confirmed and unconfirmed) in these older age groups was reduced by 29% (95% CI 21%–35%, p < 0.001). One hundred and twenty-three children were admitted to hospital with a diagnosis of severe malaria, with 64 in control areas and 59 in SMC areas, showing a reduction in the incidence rate of severe disease of 45% (95% CI 5%–68%, p = 0.031). Estimates of the reduction in the prevalence of parasitaemia at the end of the transmission season in SMC areas were 68% (95% CI 35%–85%) p = 0.002 in 2008, 84% (95% CI 58%–94%, p < 0.001) in 2009, and 30% (95% CI -130%–79%, p = 0.56) in 2010. SMC was well tolerated with no serious adverse reactions attributable to SMC drugs. Vomiting was the most commonly reported mild adverse event but was reported in less than 1% of treatments. The average cost of delivery was US$0.50 per child per month, but varied widely depending on the size of the health post. Limitations included the low rate of mortality, which limited our ability to detect an effect on this endpoint.

          Conclusions

          SMC substantially reduced the incidence of outpatient cases of malaria and of severe malaria in children, but no difference in all-cause mortality was observed. Introduction of SMC was associated with an overall reduction in malaria incidence in untreated age groups. In many areas of Africa with seasonal malaria, there is a substantial burden in older children that could be prevented by SMC. SMC in older children is well tolerated and effective and can contribute to reducing malaria transmission.

          Trial Registration

          ClinicalTrials.gov NCT00712374

          Abstract

          In a stepped-wedge cluster-randomized trial, Paul J. Milligan and colleagues determine the effectiveness of SMC in Senegalese children up to ten years of age.

          Author Summary

          Why was this study done?
          • SMC was originally intended for children under five years of age. In many areas of the sub-Sahel, there is a substantial burden of malaria in older children; this may justify extending the age range of SMC.

          • This study was done in central Senegal to evaluate the effectiveness of SMC when given to children up to ten years of age.

          What did the researchers do and find?
          • SMC was introduced into the area served by 54 health posts by district health teams over three years using a randomised stepped-wedge design.

          • Malaria cases were detected at outpatient clinics and in hospitals, and deaths were recorded through a demographic surveillance system.

          • SMC reduced the incidence of malaria in children up to ten years of age by 60%. No reduction in all-cause child deaths was observed, but the incidence of severe malaria was reduced by 45%.

          • SMC administered to children up to ten years of age led to a reduction in malaria incidence in older age groups by 26%.

          What do these findings mean?
          • SMC given to children up to ten years of age is highly effective in preventing malaria in children and can contribute to reducing overall malaria transmission.

          • SMC programmes have started in 11 countries. In many of these countries, there is a substantial burden of malaria in older children. The findings of this study indicate that a much greater impact could be achieved by extending the age range of SMC.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Seasonal intermittent preventive treatment with artesunate and sulfadoxine-pyrimethamine for prevention of malaria in Senegalese children: a randomised, placebo-controlled, double-blind trial.

          In the Sahel and sub-Sahelian regions of Africa, malaria transmission is highly seasonal. During a short period of high malaria transmission, mortality and morbidity are high in children under age 5 years. We assessed the efficacy of seasonal intermittent preventive treatment-a full dose of antimalarial treatment given at defined times without previous testing for malaria infection. We did a randomised, placebo-controlled, double-blind trial of the effect of intermittent preventive treatment on morbidity from malaria in three health-care centres in Niakhar, a rural area of Senegal. 1136 children aged 2-59 months received either one dose of artesunate plus one dose of sulfadoxine-pyrimethamine or two placebos on three occasions during the malaria transmission season. The primary outcome was a first or single episode of clinical malaria detected through active or passive case detection. Primary analysis was by intention-to-treat. This study is registered with , number NCT00132561. During 13 weeks of follow-up, the intervention led to an 86% (95% CI 80-90) reduction in the occurrence of clinical episodes of malaria. With passive case detection, protective efficacy against malaria was 86% (77-92), and when detected actively was 86% (78-91). The incidence of malaria in children on active drugs was 308 episodes per 1000 person-years at risk, whereas in those on placebo it was 2250 episodes per 1000 person-years at risk. 13 children were not included in the intention-to-treat analysis, which was restricted to children who received a first dose of antimalarial or placebo. There was an increase in vomiting in children who received the active drugs, but generally the intervention was well tolerated. Intermittent preventive treatment could be highly effective for prevention of malaria in children under 5 years of age living in areas of seasonal malaria infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The stepped wedge trial design: a systematic review

            Background Stepped wedge randomised trial designs involve sequential roll-out of an intervention to participants (individuals or clusters) over a number of time periods. By the end of the study, all participants will have received the intervention, although the order in which participants receive the intervention is determined at random. The design is particularly relevant where it is predicted that the intervention will do more good than harm (making a parallel design, in which certain participants do not receive the intervention unethical) and/or where, for logistical, practical or financial reasons, it is impossible to deliver the intervention simultaneously to all participants. Stepped wedge designs offer a number of opportunities for data analysis, particularly for modelling the effect of time on the effectiveness of an intervention. This paper presents a review of 12 studies (or protocols) that use (or plan to use) a stepped wedge design. One aim of the review is to highlight the potential for the stepped wedge design, given its infrequent use to date. Methods Comprehensive literature review of studies or protocols using a stepped wedge design. Data were extracted from the studies in three categories for subsequent consideration: study information (epidemiology, intervention, number of participants), reasons for using a stepped wedge design and methods of data analysis. Results The 12 studies included in this review describe evaluations of a wide range of interventions, across different diseases in different settings. However the stepped wedge design appears to have found a niche for evaluating interventions in developing countries, specifically those concerned with HIV. There were few consistent motivations for employing a stepped wedge design or methods of data analysis across studies. The methodological descriptions of stepped wedge studies, including methods of randomisation, sample size calculations and methods of analysis, are not always complete. Conclusion While the stepped wedge design offers a number of opportunities for use in future evaluations, a more consistent approach to reporting and data analysis is required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Estimating the potential public health impact of seasonal malaria chemoprevention in African children

              Child mortality remains unacceptably high in many countries in sub-Saharan Africa, with malaria being a major contributor to this burden. Current estimates of malaria morbidity in Africa range from 174 million to 271 million clinical cases each year1 2, resulting in 600,000 to 1.1 million deaths1 3. Although there are uncertainties and limitations attached to each of these estimates, the burden of malaria is clearly unacceptably high and new malaria control measures are urgently needed, particularly for African children under 5 years of age. A series of studies conducted in Sahelian and sub-Sahelian Africa have shown that seasonal malaria chemoprevention (SMC), previously known as intermittent preventive treatment of malaria in children (IPTc), is a promising tool for the control of malaria in areas where transmission of malaria is highly seasonal. A meta-analysis of SMC studies in which a therapeutic course of sulphadoxine-pyrimethamine plus amodiaquine (SP-AQ) was given once per month to children under the age of 5 years during the peak malaria transmission season showed an 83% (95% CI: 72%, 89%) reduction in the incidence of clinical attacks of malaria and a similar reduction in the incidence of severe malaria (77%; 95% CI: 45%, 90%)4. Similar findings were obtained in a recent Cochrane review of IPTc studies5. The SP-AQ combination used in most trials was safe. Current evidence is consistent with a reduction in all-cause mortality due to SMC but the confidence intervals are wide (A.L.W., unpublished results)4 5. Similar results have been obtained with other antimalarial combinations given on a monthly basis. Administration every 2 months has also been tried but was less effective6. High levels of coverage have been achieved using community health workers to administer SMC, and the intervention is highly cost effective7 8. In the majority of studies, three monthly administrations have been employed and, although longer periods of administration may be considered, the evidence in relation to feasibility of delivery, safety and efficacy of SMC relates primarily to administration over a 3-month period. The World Health Organization (WHO) convened a meeting of a Technical Expert Group in May 2011 to consider whether sufficient data had been gathered to recommend incorporation of SMC into the malaria control programmes of areas with highly seasonal transmission of malaria. Their positive recommendation was reviewed by a newly constituted WHO Malaria Policy Advisory Committee in February 2012. If SMC with SP-AQ is formally recommended as policy by the Malaria Policy Advisory Committee, implementation may begin in certain countries of the Sahel and sub-Sahel sometime in 2012. Malaria control programme managers will need to consider whether regions of their country are suitable for the implementation of SMC on the basis of the incidence of malaria and its seasonality in those regions. To assist policy makers and programme managers in making such decisions, we have identified the geographical areas where SMC is likely to be an appropriate and cost-effective intervention using data on the overall incidence and seasonality of malaria in different parts of sub-Saharan Africa. In this study, we show that there are two large areas of Africa likely to have both sufficient seasonality and sufficient malaria incidence for SMC to be both effective and cost-effective. In particular, the Sahelian and sub-Sahelian regions of Africa have a large population of children under 5 years of age at risk in areas where SMC with current antimalarials is likely to be highly efficacious, and where millions of malaria cases and tens of thousands of childhood deaths could potentially be prevented each year. Results Defining areas suitable for the implementation of SMC Fifty-six sites where monthly malaria incidence had been measured for 12 consecutive months were identified in 22 sub-Saharan African countries (Supplementary Tables S1,2). Areas meeting seasonality definition B (60% of annual incidence within 4 consecutive months) were observed more frequently in the Sahel and sub-Sahel than in other parts of Africa. Definition B gave consistent results in sites where more than one type of malaria outcome had been recorded (for example, severe malaria and clinical malaria) or where information was available for several years. Definition C (50% of annual incidence in 4 months) was not stringent enough to identify SMC areas, as a large number of sites had this level of seasonality. Definition A (75% of annual incidence in 4 months) excluded several sites known to be highly seasonal, including sites in the Gambia and Senegal, suggesting that this definition is too strict. Definition B was, therefore, used for subsequent analyses. After inspection of site-specific rainfall patterns, the severe malaria data reported for one site were considered unreliable (seasonality in malaria incidence was much stronger than the seasonality in rainfall), and this site was excluded as an outlier; 55 sites were, therefore, available for analysis (Supplementary Tables S1,2). The best predictor of sufficient seasonality for SMC according to definition B was >60% of the total annual rainfall within three consecutive months; this cutoff identified areas with incidence patterns suitable for SMC with a sensitivity of 95.0% and a specificity of 73.5% (Fig. 1). Maps produced by rainfall seasonality alone, and by rainfall seasonality in areas endemic for Plasmodium falciparum, identified two broad areas as being potentially suitable for deployment of SMC (Fig. 2a,b). The first includes much of the Sahelian and sub-Sahelian regions of Africa, which matches well with the sites identified from the seasonality assessment of epidemiological data. The second area is in southern Africa, stretching from Namibia in the west to Mozambique and Southern Tanzania in the east. Estimating the population and burden in SMC areas The geographical area mapped by rainfall seasonality, as defined above, in malaria endemic areas led to an estimate of 39 million children under 5 years of age at risk of malaria in areas suitable for implementation of SMC, 24.9 million in the Sahel or sub-Sahel and 14.1 million in southern and eastern Africa. On the basis of this population at risk, the method used in the World Malaria Report 2008 (WMR)9 gave a total burden estimate of 33.7 million cases per year in children under 5 years of age in sites suitable for SMC, 24.1 million cases in the Sahel and sub-Sahel, and 9.6 million per year in the rest of Africa (Table 1). The burden estimate using a prevalence-incidence relationship derived by the Malaria Atlas Project (MAP)10 was 12 million malaria cases (see Methods), 8.5 million of these in the Sahel and sub-Sahel. Mortality estimates using a fixed case fatality rate were 151,552 (108,506 in the Sahel and sub-Sahel) for the WMR burden estimate and 53,953 (38,474 in the Sahel and sub-Sahel) for the MAP burden estimate. Use of a population-based mortality rate, as described by Rowe et al.11 gave an estimate of 314,283 deaths from malaria (221,811 in the Sahel and sub-Sahel). Applying a higher case fatality rate of 10 per 1,000 gave similar estimates to those produced using the method of Rowe et al.11 (data not shown). The burden in SMC areas above minimum incidence thresholds Applying lower prevalence thresholds to the map of areas suitable for SMC (Fig. 2c,d) produced smaller population estimates (Tables 2 and 3): 28.9 million children under 5 years of age at risk in areas with incidence greater than 0.1 episodes per child during the transmission peak (21 million in the Sahel and sub-Sahel) and 24.9 million children at risk in areas with 0.2 episodes per child during the transmission peak (18.9 million in the Sahel and sub-Sahel). Corresponding morbidity and mortality estimates were slightly lower but remained substantial, particularly in the Sahel and sub-Sahel. The most stringent incidence threshold of 0.2 episodes per child during the transmission peak resulted in an estimate of 25.7 million malaria cases and 115,704 deaths (18.9 million cases and 85,225 deaths in the Sahel and sub-Sahel). Estimating the potential public health impact of SMC Using the WMR estimate of 33.7 million malaria cases per year in children under 5 years of age in the areas mapped as suitable for SMC, and 151,552 deaths per year (applying the fixed case fatality rate (CFR) to the incidence estimate), SMC is predicted to have a considerable impact (Fig. 3). Restricting estimates to areas with incidence greater than 0.2 cases per child per year made only relatively minor changes. Even if our approach has resulted in a 50% overestimate of the malaria burden in SMC areas, the potential impact of SMC could still be substantial, with ~5 million cases and 20,000 deaths averted if the intervention was widely deployed (Table 4). Discussion We have defined the epidemiological settings where SMC is likely to be a suitable intervention and mapped the geographical areas where this epidemiology is likely to be found. Climate-based predictors identified the highly seasonal areas suitable for SMC with high sensitivity and good specificity. It is clear from our estimates that there is a large population of children under 5 years of age at risk from malaria in areas where SMC is likely to be appropriate. The burden of malaria in these areas, particularly in countries in the Sahel and sub-Sahel, is substantial and suggests that SMC deployed at scale could have a major public health impact. Most evidence on the efficacy of SMC relates to delivery over 3 months. We chose to focus on incidence during a period of 4 consecutive months as this is the longest period for which 3 monthly courses of SMC might be expected to provide a reasonably high level of protection. Our assumption of impact during a 4-month peak was conservative as this was based on estimates of protective efficacy obtained from a study of children sleeping under insecticide treated nets over a three-and-a-half month follow-up period, assuming no protection in the subsequent two weeks. Although a considerable number of studies were identified in the literature review, only a small proportion of these reported morbidity data in the required format to assess seasonality in malaria burden reliably. Nevertheless, enough data points were found to explore the utility of different cutoffs to define malaria incidence as sufficiently seasonal for SMC to be valuable. As previously reported12, in sites with 2 rainy seasons, the largest number of cases per month did not necessarily occur in 4 consecutive months (Supplementary Tables S1,2). Therefore, some situations where SMC may be appropriate, if directed at two seasonal peaks in transmission, may not have been identified by the approach used here. However, to date, SMC has not been used in such settings; whether this would be appropriate requires further investigation. Our approach focusses on epidemiological situations with a single peak in transmission, situations in which the efficacy of SMC has already been well characterized. Rainfall patterns delineated two distinct geographical areas where SMC could be considered. The estimates of populations of SMC areas defined in our analyses are consistent with the populations living in seasonal transmission areas determined by the Mapping Malaria Risk in Africa project13, but are more conservative (Supplementary Tables S3,4). The map incorporating malaria endemicity is more biologically plausible than one based on rainfall alone as it excludes areas where rainfall may be seasonal but very low, or where other conditions prohibit malaria transmission. Malaria control programmes operating in countries bordering the area identified as being suitable for SMC should undertake assessment of the seasonality of malaria in these areas, using local incidence data to guide decisions about whether deployment of SMC would be appropriate. For example, rainfall in most of northern Ghana did not meet the seasonality criterion and our estimate of the population at risk in Ghana is consequently relatively small. However, the epidemiology of malaria in Navrongo, Ghana suggests that the northern regions may be suitable for SMC (Supplementary Tables S1,2)14. Therefore, it is likely that a larger area could potentially benefit from SMC and a larger population could be protected than we have defined in this study. The continental maps showing areas suitable for SMC implementation covered primarily Sahelian and sub-Sahelian areas as expected a priori. Areas meeting the seasonality criterion were also found in southern and eastern Africa, where there is much less epidemiological information on the seasonality of malaria. In some of these areas, the incidence of malaria is low and unstable and therefore SMC is not likely to be a suitable intervention. Incidence thresholds, based on cost per case and per disability-adjusted life year averted, indicated that SMC might still be worthwhile in some areas, particularly in southern Tanzania, Malawi and northern Mozambique, but this needs further investigation. For SMC to be deployed in southern and eastern Africa, an alternative to the SP-AQ combination would be needed owing to high levels of SP resistance15. The difficulties in estimating the malaria burden in Africa accurately are well recognized3 9 11 16 17 18. Our emphasis was to derive a plausible and conservative estimate of the malaria burden using transparent methods, rather than aiming to produce an alternative estimate to those provided by others. However, burden estimates based on different approaches showed broadly consistent figures. The estimates using the MAP prevalence–incidence function were lowest, but it is clear from comparison with data from SMC sites that these are likely to be an underestimate as the function relates prevalence in children to all-age incidence rather than incidence in children under 5 years of age. Furthermore, the estimates produced using the WMR method were similar to those derived using a prevalence–incidence function fitted specifically to incidence data on children under 5 years of age (Griffin J., personal communication). Our estimate of the impact of SMC on mortality is simplistic, assuming that a reduction in malaria cases would be accompanied by a proportional reduction in malaria deaths. However, our estimates of impact do not include the reductions in indirect mortality that may result from better control of malaria. Some of the areas with the highest malaria burden in all of Africa lie within the parts of the Sahel and sub-Sahel, which we have identified as being suitable for SMC2. Deployment of SMC in these areas would be expected to be highly cost effective on the basis of the high malaria incidence per child each year. The coverage and efficacy that would be achieved, if SMC was to be implemented as a large-scale public health measure, is not yet known, but high coverage has been achieved by community-based health workers7, and efficacy should remain high where SP and AQ resistance levels remain low or moderate. Furthermore, our analysis suggests that even with moderate levels of coverage, the deployment of SMC could have a significant public health impact. The epidemiological and geographical situations in which SMC is likely to be useful can be defined on the basis of epidemiological data and surrogate measures of seasonality in malaria transmission. A simple algorithm could be developed to help policy makers to decide whether the malaria incidence in their country, or certain regions within their country, was sufficiently seasonal for the deployment of SMC. The algorithm could also indicate the potential impact of implementation of SMC with different levels of efficacy and coverage. Although the burden of malaria in the areas where SMC could be deployed is uncertain, it is likely to be considerable. Our analyses suggest that even where other effective malaria control tools, such as insecticide-treated nets (ITNs), indoor residual spraying of insecticides (IRS) and partially effective malaria vaccines are deployed, SMC could potentially avert a very large number of malaria episodes and many thousands of unnecessary deaths in several countries where malaria is currently not adequately controlled. Methods Defining SMC seasonality We performed a literature review to identify studies reporting incidence of parasitologically confirmed clinical malaria and/or severe malaria for 12 consecutive months. Sources of data used included published monthly malaria incidence data obtained from a systematic review conducted in 2005 (refs 12,19), surveillance data and an additional systematic review undertaken in 2010, including contact with authors. Search criteria and further details are included in Supplementary Methods, Supplementary Table S5 and Supplementary Fig. S1. Locations of the sites are shown in Supplementary Figs S2,3. A previous analysis indicated that ≥75% of malaria incidence occurring within 6 consecutive months provided a useful definition of 'marked seasonality'12. Most of the evidence for the efficacy and safety of SMC relates to monthly delivery over a 3-month period, which provided protection during a transmission peak of 3-to-4 months. We therefore explored different definitions of the degree of seasonality based on the maximum percentage of the total annual malaria burden occurring within any consecutive four-month period. Three definitions were considered: at least 75% (definition A), 60% (definition B) and 50% (definition C) of the total annual incidence of malaria within four consecutive months. Identifying spatial predictors of SMC areas To characterize seasonality in malaria incidence outside the areas, for which epidemiological data were available, we explored whether rainfall patterns, estimated from a combination of satellite imagery and rain gauge data20, could be used as a predictor of the degree of seasonality in incidence. Daily accumulated rainfall data were available for a grid of 0.1 degree×0.1 degree resolution, with data missing for only 2 days since November 2000. We used data from 2002 to 2009 and aggregated the daily time series to time series using 64 points per year. Fourier analyses were undertaken to capture the average seasonality over this time period. Each site identified by our review was geo-referenced and site-specific rainfall data obtained. For each location of interest, we selected the pixel closest to the given longitude/latitude. The percentage (in 5% intervals) of the annual total rainfall occurring in a range of different consecutive periods (ranging from 2 to 6 months) was then calculated to create a set of potential indicators of seasonality. The sensitivity and specificity of each indicator variable as a predictor of the degree of seasonality in malaria incidence was calculated to create receiver operating characteristic (ROC) curves using Stata 11 software (College Station, Texas, USA). The best predictor of seasonality in malaria incidence was then used to map areas suitable for SMC across Africa using the 0.1 degree×0.1 degree grid of rainfall data. For each pixel, the seasonality in rainfall was calculated by assessing the maximum percentage of the total annual rainfall occurring in a period of consecutive months. Pixels meeting the criterion specified by the best indicator variable were considered as potentially suitable for SMC. To further improve the biological plausibility of the spatial mapping of SMC areas, we merged the map produced by seasonality in rainfall with spatial malaria endemicity estimates produced by MAP for 2010 (ref. 21), restricting the area mapped by seasonality in rainfall to include only areas with stable P. falciparum transmission (annual incidence of P. falciparum infections >0.1 per 1,000 population per annum). Estimating the population and burden in SMC areas The total population at risk in the areas identified by the approach described above was derived from LandScan 2007 population estimates22. Population estimates were aggregated within first administrative level and then by country, and scaled to 2010 by applying national growth rates from UN projections23. We estimated the number of children under 5 years of age using UN demographic information for each country23 and the percentage living in urban/rural areas based on a population density threshold24. For full details, see Supplementary Methods. Malaria incidence in children under 5 years of age in SMC areas was estimated using two published methods (Table 5). The first follows the approach used in the 2008 WMR for countries where estimates of malaria incidence could not be made from routinely reported data9 25. Fixed age-specific incidence rates were used according to the level of malaria risk as defined by the Mapping Malaria Risk in Africa map, and in high-transmission areas, incidence estimates were halved for populations living in urban areas13. To retain transparency, incidence estimates were not reduced further to account for coverage of other malaria control tools; the possible impact of interventions such as ITNs and IRS are considered in a sensitivity analysis. The second method used a published function relating annual all-age incidence to prevalence of parasitaemia in children 2–10 years of age10. We applied the central estimate of this function to the MAP prevalence data to estimate incidence (Fig. 4). The effect of urban residence is incorporated in the prevalence estimates2 and is, therefore, implicitly accounted for. By comparison with observed incidence/prevalence observations made in SMC studies, this relationship is likely to result in a conservative estimate of the incidence of malaria in children under 5 years of age during the transmission peak for a given prevalence (Fig. 4). The mortality burden in SMC areas was also estimated by two approaches (Table 5). Method one assumes a fixed CFR of 4.5 deaths per 1,000 malaria cases (0.45%), the central estimate for areas where malaria morbidity is routinely reported9. This fixed CFR was applied to incidence estimates derived using both the WMR method and the MAP incidence–prevalence function. We also explored a higher case fatality rate of 10 per 1,000 (that is, 1% fatality rate). Method 2 uses the approach of Rowe et al., applying a fixed mortality rate to populations at risk rather than to malaria cases11. For simplicity, we did not amend our estimates to take account of the relative contribution of malaria to all-cause under 5 mortality, as performed in the WMR, but this would only be expected to reduce the estimates by ~10% (ref. 9). The burden in SMC areas above minimum incidence thresholds Analysis of the costs of SMC delivery undertaken by the IPTc Working Group suggests that, on the basis of both costs per case averted and cost per disability-adjusted life year averted, SMC is likely to be cost-effective where malaria incidence exceeds 0.2. episodes per child during the peak transmission season, but may not be cost effective where incidence is less than 0.1 episodes per child during the transmission peak (Pitt C, Milligan P, unpublished results). The MAP incidence–prevalence relationship suggests that incidence would be at least 0.1 episodes per child per season at a prevalence of parasitaemia >8.8%, and at least 0.2 episodes per child at a prevalence >17.3%. Using these cutoffs is likely to be highly conservative because incidence in children at a given prevalence is likely to be substantially higher than all age incidence, the prediction given by the MAP function (Fig. 4). These minimum prevalence thresholds were used to map a restricted SMC area, giving a conservative estimate of the population at risk and of morbidity and mortality in areas where SMC would be appropriate on the basis of sufficiently high incidence. Estimating the potential public health impact of SMC We considered the number of cases and deaths that could potentially be averted with different levels of SMC efficacy and coverage. In sites considered suitable for SMC, the median fraction of incidence occurring in the 4 consecutive months of peak transmission was 77% and the mean 75.7% (Supplementary Table S1,2). We therefore assumed that, on average, 75% of the annual burden occurred in the SMC period, but also explored the impact of SMC, if 60% and 90% of annual incidence occurred in the period when SMC was given. In recent studies of SMC in Burkina Faso and Mali, protective efficacy of 3, monthly courses over a period of three-and-a-half months from the date of the first course was 70% and 82% respectively26 27. On the basis of these figures, assuming no protective effect in the two weeks after the end of the follow-up, the protective efficacy over four months would be 61% (Burkina) and 72% (Mali), a mean of 67%. We therefore assumed that a protective efficacy of 65% would be a reasonable estimate of protection provided by three courses over a 4-month peak. Four monthly courses over 4 months might provide protective efficacy of ~80%. We explored the potential range in impact of SMC by allowing for a 25 or 50% underestimate or overestimate of the malaria burden without SMC. We accounted for a possible overestimate in this way to include the burden estimate that would be expected, had we additionally adjusted for coverage of other widely used malaria control tools. ITNs and IRS would be estimated to reduce incidence by ~50% and 60%, respectively, at 100% coverage9 28. However, actual coverage of these interventions is currently far less than 100% in most African countries29. Author contributions M.C. and A.R.F. designed the study and wrote the first draft of the manuscript. M.C., A.R.F. and T.G. analysed the data. A.R.F. and A.W. undertook the literature review. M.C. and T.G. calculated the burden estimates. D.D. provided data and contributed to the analysis of incidence data. A.G. developed the spatial modelling framework. P.M. undertook the cost-effectiveness analysis. P.M., A.G. and B.G. contributed to all stages of the design and analysis. B.G. led the study team. All authors contributed to interpretation of the analyses and revised the draft manuscript. Additional information How to cite this article: Cairns, M. et al. Estimating the potential public health impact of seasonal malaria chemoprevention in African children. Nat. Commun. 3:881 doi: 10.1038/ncomms1879 (2012). Supplementary Material Supplementary Information Supplementary Figures S1–S3, Supplementary Tables S1–S5, Supplementary Methods and Supplementary References
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                plos
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, CA USA )
                1549-1277
                1549-1676
                22 November 2016
                November 2016
                : 13
                : 11
                : e1002175
                Affiliations
                [1 ]Université Cheikh Anta Diop, Dakar, Sénégal
                [2 ]London School of Hygiene & Tropical Medicine, London, United Kingdom
                [3 ]Institut de Recherche pour le Développement, Dakar, Sénégal
                [4 ]Ministère de la Santé et de la Prévention, Sénégal
                Kenya Medical Research Institute - Wellcome Trust Research Programme, KENYA
                Author notes

                The authors have declared that no competing interests exist.

                • Conceptualization: BC EHB ChS JLN JFG YD CP MoN MC EF MaN AL RT SF BF OS LK EK CF OF JFT CoS FBF PMT OKF BG OG PM.

                • Data curation: JFG EHB PM CF EK MC JLN.

                • Formal analysis: PM MC EHB JLN CF EK.

                • Funding acquisition: PM BC OG.

                • Investigation: BC EHB JLN JFG YD EF CP MoN SF CJS BF MaN AL RT OS LK OF PM.

                • Methodology: PM BC EHB JLN JFG YD EF CP SF CoS JFT BG OG OF OKF.

                • Project administration: BC OG EHB ChS JFT BF JLN PM.

                • Resources: BC PM CS CoS OF JFT FBF PMT OKF OG.

                • Software: JFG PM MC EK CF.

                • Supervision: BC PM EHB OG ChS JFT CoS OKF OF FBF PMT JLN.

                • Validation: PM BC EHB JLN JFG EF CP MonD SF FBF OS LK OF MC EK CF.

                • Visualization: PM EHB.

                • Writing – original draft: PM BC.

                • Writing – review & editing: BC EHB ChS JLN JFG YD CP MoN MC EF MaN AL RT SF BF OS LK EK CF OF JFT CoS FBF PMT OKF BG OG PM.

                Author information
                http://orcid.org/0000-0001-8935-6529
                http://orcid.org/0000-0002-9724-3724
                Article
                PMEDICINE-D-15-02863
                10.1371/journal.pmed.1002175
                5119693
                27875528
                a890bd3f-65ae-43a6-8ab5-e74dff003722
                © 2016 Cissé et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 September 2015
                : 6 October 2016
                Page count
                Figures: 3, Tables: 3, Pages: 18
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000865, Bill and Melinda Gates Foundation;
                Award ID: 40099
                Award Recipient :
                This study was funded by the Bill and Melinda Gates Foundation, grant number 40099. MC received support through a Population Health Scientist Fellowship jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID). JLN is supported by a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Parasitic Diseases
                Malaria
                Medicine and Health Sciences
                Tropical Diseases
                Malaria
                People and Places
                Population Groupings
                Age Groups
                People and Places
                Demography
                Death Rates
                Biology and Life Sciences
                Population Biology
                Population Metrics
                Death Rates
                Medicine and Health Sciences
                Hematology
                Anemia
                Biology and Life Sciences
                Organisms
                Protozoans
                Parasitic Protozoans
                Malarial Parasites
                People and Places
                Population Groupings
                Age Groups
                Children
                People and Places
                Population Groupings
                Families
                Children
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Germ Cells
                Gametocytes
                People and Places
                Geographical Locations
                Africa
                Senegal
                Custom metadata
                Demographic Surveillance System data, malaria incidence data, and individual-level survey data, are available at http://dx.doi.org/10.17037/DATA.117. Requests for access will be reviewed by a Data Access Committee to ensure use of the data protect participant privacy according to the terms of participant consent and ethics committee approval.

                Medicine
                Medicine

                Comments

                Comment on this article