21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pantanodontidae (Teleostei, Cyprinodontiformes), the sister group to all other cyprinodontoid killifishes as inferred by molecular data

      , ,
      Zoosystematics and Evolution
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pantanodon, containing two African extant species and four European fossil species, for a long time had an uncertain position among the Cyprinodontiformes due to its peculiar morphology. In the last decades, Pantanodon has been considered closely related to African lamp-eyes of the Procatopodinae clade, which is contained in the Poeciliidae, a teleost fish family with a broad geographical distribution in Africa and the Americas. However, recent molecular studies have challenged the monophyly of the Poeciliidae, but the position of Pantanodon remained uncertain. We analysed one mitochondrial (COI) and five nuclear loci (GLYT1, MYH6, SH3PX3, RAG1, ENC1), a total of 5,083 bp, for 27 cyprinodontiform taxa and 6 outgroups, obtaining a well-supported phylogeny, in which the monophyly of Poeciliidae, as supported by morphological data is refuted. Pantanodon stuhlmanni, the type species of the genus, is recovered as the most basal cyprinodontoid lineage and other African taxa formerly placed in Poeciliidae are highly supported as more closely related to European non-poeciliid cyprinodontoid genera than to other taxa. Since the present tree topology is not compatible with the present classification of the Cyprinodontoidei, a new classification using available family group names is provided: Pantanodontidae is used for Pantanodon; Procatopodidae, for the African lamp-eye clade; and Fluviphylacidae, for the South American genus Fluviphylax. Poeciliidae is restricted to the American livebearers, hence restoring the classification generally used prior to 1981.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sequence alignment with the Clustal series of programs.

          R Chenna (2003)
          The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Tree of Life and a New Classification of Bony Fishes

            The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond.

              The perciform group Labroidei includes approximately 2600 species and comprises some of the most diverse and successful lineages of teleost fishes. Composed of four major clades, Cichlidae, Labridae (wrasses, parrotfishes, and weed whitings), Pomacentridae (damselfishes), and Embiotocidae (surfperches); labroids have been an icon for studies of biodiversity, adaptive radiation, and sexual selection. The success and diversification of labroids have been largely attributed to the presence of a major innovation in the pharyngeal jaw apparatus, pharyngognathy, which is hypothesized to increase feeding capacity and versatility. We present results of large-scale phylogenetic analyses and a survey of pharyngeal jaw functional morphology that allow us to examine the evolution of pharyngognathy in a historical context. Phylogenetic analyses were based on a sample of 188 acanthomorph (spiny-rayed fish) species, primarily percomorphs (perch-like fishes), and DNA sequence data collected from 10 nuclear loci that have been previously used to resolve higher level ray-finned fish relationships. Phylogenies inferred from this dataset using maximum likelihood, Bayesian, and species tree analyses indicate polyphyly of the traditional Labroidei and clearly separate Labridae from the remainder of the traditional labroid lineages (Cichlidae, Embiotocidae, and Pomacentridae). These three "chromide" families grouped within a newly discovered clade of 40 families and more than 4800 species (>27% of percomorphs and >16% of all ray-finned fishes), which we name Ovalentaria for its characteristic demersal, adhesive eggs with chorionic filaments. This fantastically diverse clade includes some of the most species-rich lineages of marine and freshwater fishes, including all representatives of the Cichlidae, Embiotocidae, Pomacentridae, Ambassidae, Gobiesocidae, Grammatidae, Mugilidae, Opistognathidae, Pholidichthyidae, Plesiopidae (including Notograptus), Polycentridae, Pseudochromidae, Atherinomorpha, and Blennioidei. Beyond the discovery of Ovalentaria, this study provides a surprising, but well-supported, hypothesis for a convict-blenny (Pholidichthys) sister group to the charismatic cichlids and new insights into the evolution of pharyngognathy. Bayesian stochastic mapping ancestral state reconstructions indicate that pharyngognathy has evolved at least six times in percomorphs, including four separate origins in members of the former Labroidei, one origin in the Centrogenyidae, and one origin within Beloniformes. Our analyses indicate that all pharyngognathous fishes have a mechanically efficient biting mechanism enabled by the muscular sling and a single lower jaw element. However, a major distinction exists between Labridae, which lacks the widespread, generalized percomorph pharyngeal biting mechanism, and all other pharyngognathous clades, which possess this generalized biting mechanism in addition to pharyngognathy. Our results reveal a remarkable history of pharyngognathy: far from a single origin, it appears to have evolved at least six times, and its status as a major evolutionary innovation is reinforced by it being a synapomorphy for several independent major radiations, including some of the most species rich and ecologically diverse percomorph clades of coral reef and tropical freshwater fishes, Labridae and Cichlidae. [Acanthomorpha; Beloniformes; Centrogenyidae; key innovation; Labroidei; Ovalentaria; pharyngeal jaws; Perciformes.].
                Bookmark

                Author and article information

                Journal
                Zoosystematics and Evolution
                ZSE
                Pensoft Publishers
                1860-0743
                1435-1935
                February 09 2018
                February 09 2018
                : 94
                : 1
                : 137-145
                Article
                10.3897/zse.94.22173
                a8910aa3-dded-4eeb-994e-780f4d04ee8e
                © 2018

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article