13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging Roles for VEGF-D in Human Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Blood vessels and lymphatic vessels are located in many tissues and organs throughout the body, and play important roles in a wide variety of prevalent diseases in humans. Vascular endothelial growth factor-D (VEGF-D) is a secreted protein that can promote the remodeling of blood vessels and lymphatics in development and disease. Recent fundamental and translational studies have provided insight into the molecular mechanisms by which VEGF-D exerts its effects in human disease. Hence this protein is now of interest as a therapeutic and/or diagnostic target, or as a potential therapeutic agent, in a diversity of indications in cardiovascular medicine, cancer and the devastating pulmonary condition lymphangioleiomyomatosis. This has led to clinical trial programs to assess the effect of targeting VEGF-D signaling pathways, or delivering VEGF-D, in angina, cancer and ocular indications. This review summarizes our understanding of VEGF-D signaling in human disease, which is largely based on animal disease models and clinicopathological studies, and provides information about the outcomes of recent clinical trials testing agonists or antagonists of VEGF-D signaling.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and regulation of endothelial VEGF receptor signalling.

          Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of mTORC1 by PI3K signaling.

            The class I phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling network directs cellular metabolism and growth. Activation of mTORC1 [composed of mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8(mLST8), 40-kDa proline-rich Akt substrate (PRAS40), and DEP domain-containing mTOR-interacting protein (DEPTOR)] depends on the Ras-related GTPases (Rags) and Ras homolog enriched in brain (Rheb) GTPase and requires signals from amino acids, glucose, oxygen, energy (ATP), and growth factors (including cytokines and hormones such as insulin). Here we discuss the signal transduction mechanisms through which growth factor-responsive PI3K signaling activates mTORC1. We focus on how PI3K-dependent activation of Akt and spatial regulation of the tuberous sclerosis complex (TSC) complex (TSC complex) [composed of TSC1, TSC2, and Tre2-Bub2-Cdc16-1 domain family member 7 (TBC1D7)] switches on Rheb at the lysosome, where mTORC1 is activated. Integration of PI3K- and amino acid-dependent signals upstream of mTORC1 at the lysosome is detailed in a working model. A coherent understanding of the PI3K-mTORC1 network is imperative as its dysregulation has been implicated in diverse pathologies including cancer, diabetes, autism, and aging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity.

              Tumours often engage the lymphatic system in order to invade and metastasize. The tumour-draining lymph node may be an immune-privileged site that protects the tumour from host immunity, and lymph flow that drains tumours is often increased, enhancing communication between the tumour and the sentinel node. In addition to increasing the transport of tumour antigens and regulatory cytokines to the lymph node, increased lymph flow in the tumour margin causes mechanical stress-induced changes in stromal cells that stiffen the matrix and alter the immune microenvironment of the tumour. We propose that synergies between lymphatic drainage and flow-induced mechanotransduction in the stroma promote tumour immune escape by appropriating lymphatic mechanisms of peripheral tolerance.
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                04 January 2018
                March 2018
                : 8
                : 1
                : 1
                Affiliations
                [1 ]Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC 3000, Australia
                [2 ]Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
                Author notes
                [* ]Correspondence: steven.stacker@ 123456petermac.org (S.A.S.); marc.achen@ 123456petermac.org (M.G.A.); Tel.: +61-3-9656-5263 (S.A.S.); +61-3-8559-7107 (M.G.A.)
                Article
                biomolecules-08-00001
                10.3390/biom8010001
                5871970
                29300337
                a8940364-7c6f-4cfb-9293-a4468df7b4de
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 November 2017
                : 28 December 2017
                Categories
                Review

                vegf-d,lymphatic vessels,endothelium,metastasis,growth factor,receptor,signaling,angiogenesis,lymphangiogenesis

                Comments

                Comment on this article