5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanism of nicotine-induced pulmonary fibroblast transdifferentiation.

      American Journal of Physiology - Lung Cellular and Molecular Physiology
      Biological Markers, Cell Differentiation, drug effects, Cell Line, Cyclic AMP, metabolism, Cyclic AMP-Dependent Protein Kinases, Fibroblasts, cytology, Gene Expression, Humans, Lung, Nicotine, pharmacology, Nicotinic Agonists, Paracrine Communication, Parathyroid Hormone-Related Protein, genetics, Phenotype, RNA, Messenger, analysis, Receptor, Parathyroid Hormone, Type 1, Receptors, Nicotinic, Signal Transduction, Triolein, pharmacokinetics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We tested the hypothesis that in vitro nicotine exposure disrupts specific epithelial-mesenchymal paracrine signaling pathways and results in pulmonary interstitial lipofibroblast (LIF)-to-myofibroblast (MYF) transdifferentiation, resulting in altered pulmonary development and function. Studies were done to determine whether nicotine induces LIF-to-MYF transdifferentiation and to elucidate underlying molecular mechanism(s) involved and to determine whether nicotine-induced LIF-to-MYF transdifferentiation could be prevented by stimulating specific alveolar interstitial fibroblast lipogenic pathway. WI38 cells, a human embryonic pulmonary fibroblast cell line, were treated with nicotine with or without specific agonists of alveolar fibroblast lipogenic pathway, PTHrP, DBcAMP, or the potent PPARgamma stimulant rosiglitazone (RGZ) for 7 days. Expression of key lipogenic and myogenic markers was examined by RT-PCR, Western hybridization, and immunohistochemistry. The effect of nicotine on triglyceride uptake by WI38 cells and PTHrP binding to its receptor was also determined. Finally, the effect of transfecting WI38 cells with a PPARgamma expression vector on nicotine-induced LIF-to-MYF transdifferentiation was determined. Nicotine treatment resulted in significantly decreased expression of lipogenic and increased expression of myogenic markers in a dose-dependent manner, indicating nicotine-induced LIF-to-MYF transdifferentiation. This was accompanied by decreased PTHrP receptor binding to its receptor. The nicotine-induced LIF-to-MYF transdifferentiation was completely prevented by concomitant treatment with PTHrP, DBcAMP, RGZ, and by transiently overexpressing PPARgamma. Our data suggest nicotine induces alveolar LIF-to-MYF transdifferentiation through a mechanism involving downregulation of lipogenic PTHrP-mediated, cAMP-dependent PKA signaling pathway, which can be prevented using specific molecular targets. Potential therapeutic implications of these observations against in utero nicotine-induced lung injury remain to be tested.

          Related collections

          Author and article information

          Comments

          Comment on this article