18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Origin and early development of the chicken adenohypophysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adenohypophysis (ADH) is an important endocrine organ involved in the regulation of many physiological processes. The late morphogenesis of this organ at neural tube stages is well known: the epithelial ADH primordium is recognized as an invagination of the stomodeal roof (Rathke’s pouch), whose walls later thicken and differentiate as the primordium becomes pediculated, and then fully separated from the stomodeum. The primordium attaches to the pial surface of the basal hypothalamus, next to the neurohypophyseal field (NH; future posterior pituitary), from which it was previously separated by migrating prechordal plate (pp) cells. Once the NH evaginates, the ADH surrounds it and jointly forms with it the pituitary gland. In contrast, little is known about the precise origin of the ADH precursors at neural plate stages and how the primordium reaches the stomodeum. For that reason, we produced in the chicken a specific ADH fate map at early neural plate stages, which was amplified with gene markers. By means of experiments labeling the mapped presumptive ADH, we were able to follow the initial anlage into its transformation into Rathke’s pouch. The ADH origin was corroborated to be strictly extraneural, i.e., to lie at stage HH4/5 outside of the anterior neural plate (anp) within the pre-placodal field. The ADH primordium is fully segregated from the anterior neural border cells and the neighboring olfactory placodes both in terms of precursor cells and molecular profile from head fold stages onwards. The placode becomes visible as a molecularly characteristic ectodermal thickening from stage HH10 onwards. The onset of ADH genoarchitectonic regionalization into intermediate and anterior lobes occurs at closed neural tube stages.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          A series of normal stages in the development of the chick embryo.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Forebrain gene expression domains and the evolving prosomeric model.

            The prosomeric model attributes morphological meaning to gene expression patterns and other data in the forebrain. It divides this territory into the same transverse segments (prosomeres) and longitudinal zones in all vertebrates. The axis and longitudinal zones of this model are widely accepted but controversy subsists about the number of prosomeres and their nature as segments. We describe difficulties encountered in establishing continuity between prosomeric limits postulated in the hypothalamus and intra-telencephalic limits. Such difficulties throw doubt on the intersegmental nature of these limits. We sketch a simplified model, in which the secondary prosencephalon (telencephalon plus hypothalamus) is a complex protosegment not subdivided into prosomeres, which exhibits patterning singularities. By contrast, we continue to postulate that prosomeres p1-p3 (i.e. the pretectum, thalamus and prethalamus) are the caudal forebrain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fate mapping and cell lineage analysis of Hensen's node in the chick embryo.

              Fate maps of chick Hensen's node were generated using DiI and the lineage of individual cells studied by intracellular injection of lysine-rhodamine-dextran (LRD). The cell types contained within the node are organized both spatially and temporally. At the definitive primitive streak stage (Hamburger and Hamilton stage 4), Hensen's node contains presumptive notochord cells mainly in its anterior midline and presumptive somite cells in more lateral regions. Early in development it also contains presumptive endoderm cells. At all stages studied (stages 3-9), some individual cells contribute progeny to more than one of these tissues. The somitic precursors in Hensen's node only contribute to the medial halves of the somites. The lateral halves of the somites are derived from a separate region in the primitive streak, caudal to Hensen's node.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                17 February 2015
                2015
                : 9
                : 7
                Affiliations
                [1] 1Faculty of Medicine, Department of Human Anatomy, School of Medicine and IMIB (Instiuto Murciano de Investigación Biosanitaria), University of Murcia Murcia, Spain
                [2] 2Department of Cell Biology, Faculty of Science, University of Extremadura Badajoz, Spain
                Author notes

                Edited by: Gonzalo Alvarez-Bolado, University of Heidelberg, Germany

                Reviewed by: Kenji Shimamura, Kumamoto University, Japan; Diego Echevarria, University of Miguel Hernandez (UMH-CSIC), Spain

                *Correspondence: Luis Puelles, Faculty of Medicine, Department of Human Anatomy, School of Medicine and IMIB (Instiuto Murciano de Investigación Biosanitaria), University of Murcia, Campus Espinardo s/n, Murcia, 30071 MU, Spain e-mail: puelles@ 123456um.es

                Present address: Luisa Sánchez-Arrones, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain

                This article was submitted to the journal Frontiers in Neuroanatomy.

                Article
                10.3389/fnana.2015.00007
                4330794
                25741242
                a8a61cc9-235a-4395-84f9-d73649f7f636
                Copyright © 2015 Sánchez-Arrones, Ferrán, Hidalgo-Sanchez and Puelles.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 November 2014
                : 12 January 2015
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 56, Pages: 12, Words: 7605
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                adenohypophysis,anterior pituitary,fate map,pre-placodal ectoderm,placodes,gene markers,rathke’s pouch

                Comments

                Comment on this article