Blog
About

50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electronic transport in BN-substituted bilayer graphene nano-junctions

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated a suspended bilayer graphene where the bottom (top) layer is doped by boron (nitrogen) substitutional atoms by using Density Functional Theory (DFT) calculations. We found that at high dopant concentration (one B-N pair every 32 C atoms) the electronic structure of the bilayer does not depend on the B-N distance but on the relative occupation of the bilayer graphene sub-lattices by B and N. We found that a large built in electric field is established between layers, giving rise to an energy gap. We further investigated the transport properties and found that intra-layer electron current is weakly influenced by the presence of these dopants while the inter-layer current is significantly enhanced for biases allowing the energy alignment of N and B states. This effect leads to current rectification in asymmetric junctions.

          Related collections

          Author and article information

          Journal
          1401.3678

          Condensed matter, Physical chemistry, Nanophysics

          Comments

          Comment on this article