10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gender-Specific Effect of 5-HT and 5-HIAA on Threshold Level of Behavioral Symptoms and Sex-Bias in Prevalence of Autism Spectrum Disorder

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Platelet hyperserotonemia in a subset of Autism Spectrum Disorder (ASD) probands, efficacy of selective serotonin reuptake inhibitors (SSRIs) in reducing behavioral deficits and gender-bias in normal serotonin (5-hydroxy tryptamine or 5-HT) synthesis suggest disruption in stringent regulation of serotonin metabolism in ASD. Therefore, we investigated the changes in 5-HT and 5-hydroxy indole acetic acid (5-HIAA) in ASD probands to assess its effect on the behavior of male and female probands. ASD cases ( n = 215) were examined using childhood autism rating scale (CARS). Platelet 5-HT (104 cases and 26 controls) and platelet/plasma 5-HIAA (73 cases and 17 controls) were estimated using high performance liquid chromatography coupled with electrochemical detector (HPLC-ECD). In male probands, we observed increase in platelet 5-HT content in association with increase in the score for adaptive responses and increase in platelet 5-HIAA levels with concomitant decline in the score for intellectual response. Age did not influence the neurochemical parameters, but imitation, listening responses and nonverbal communication scores decreased with age. Conversely in female probands, plasma 5-HIAA level significantly attenuated with age, when platelet 5-HT content remained unchanged. Interestingly, platelet/plasma 5-HT and plasma 5-HIAA were higher in female controls. Female probands displayed severe autism-associated behaviors. Overall results indicate gender-bias in 5-HT and 5-HIAA regulation, which probably increases the threshold level of ASD phenotypes in the females, thereby affecting ASD prevalence in a sex-specific manner.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines.

          The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The serotonin system in autism spectrum disorder: From biomarker to animal models.

            Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis.

              Elevated blood serotonin (5-HT) levels were the first biomarker identified in autism research. Many studies have contrasted blood 5-HT levels in autistic patients and controls, but different measurement protocols, technologies, and biomaterials have been used through the years. We performed a systematic review and meta-analysis to provide an overall estimate of effect size and between-study heterogeneity, while verifying whether and to what extent different methodological approaches influence the strength of this association. Our literature search strategy identified 551 papers, from which 22 studies providing patient and control blood 5-HT values were selected for meta-analysis. Significantly higher 5-HT levels in autistic patients compared to controls were recorded both in whole blood (WB) [O.R.=4.6; (3.1-5.2); P=1.0×10(-12]), and in platelet-rich plasma (PRP) [O.R.=2.6 (1.8-3.9); P=2.7×10(-7)]. Predictably, studies measuring 5-HT levels in platelet-poor plasma (PPP) yielded no significant group difference [O.R.=0.54 (0.2-2-0); P=0.36]. Altogether, elevated 5-HT blood levels were recorded in 28.3% in WB and 22.5% in PRP samples of autistic individuals, as reported in 15 and 4 studies, respectively. Studies employing HPLC vs fluorometric assays yield similar cumulative effect sizes, but the former display much lower variability. In summary, despite some limitations mainly due to small study sample sizes, our results significantly reinforce the reliability of elevated 5-HT blood levels as a biomarker in ASD, providing practical indications potentially useful for its inclusion in multi-marker diagnostic panels for clinical use.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                08 January 2020
                2019
                : 13
                : 1375
                Affiliations
                [1] 1Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra , Kolkata, India
                [2] 2Division of Neuroscience, Burnett School of Biomedical Sciences, University of Central Florida , Orlando, FL, United States
                [3] 3Department of Pathology, University of Mississippi Medical Center , Jackson, MS, United States
                [4] 4Out Patient’s Department, Manovikas Kendra , Kolkata, India
                [5] 5Human Genetics Unit, Indian Statistical Institute , Kolkata, India
                [6] 6Cell Biology & Physiology Division, Indian Institute of Chemical Biology , Kolkata, India
                [7] 7Inter University Centre for Biomedical Research and Super Speciality Hospital, Mahatma Gandhi University, , Kottayam, India
                Author notes

                Edited by: Dubravka Hranilovic, University of Zagreb, Croatia

                Reviewed by: Dubravka Svob Strac, Rudjer Boskovic Institute, Croatia; George Anderson, Independent Researcher, London, United Kingdom; James S. Sutcliffe, Vanderbilt University, United States

                *Correspondence: Usha Rajamma, ushar@ 123456iucbr.ac.in

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.01375
                6961535
                31998058
                a8b6353c-b4d8-49e6-abfc-64a4ed6f43c0
                Copyright © 2020 Chakraborti, Verma, Guhathakurta, Jaiswal, Singh, Sinha, Ghosh, Mukhopadhyay, Mohanakumar and Rajamma.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 August 2019
                : 04 December 2019
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 55, Pages: 10, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                gender,behavior,autism spectrum disorder,5-ht,5-hiaa
                Neurosciences
                gender, behavior, autism spectrum disorder, 5-ht, 5-hiaa

                Comments

                Comment on this article