5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Analysis of Proteomes of a Number of Nosocomial Pathogens by KEGG Modules and KEGG Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nosocomial (hospital-acquired) infections remain a serious challenge for health systems. The reason for this lies not only in the local imperfection of medical practices and protocols. The frequency of infection with antibiotic-resistant strains of bacteria is growing every year, both in developed and developing countries. In this work, a pangenome and comparative analysis of 201 genomes of Staphylococcus aureus, Enterobacter spp., Pseudomonas aeruginosa, and Mycoplasma spp. was performed on the basis of high-level functional annotations—KEGG pathways and KEGG modules. The first three organisms are serious nosocomial pathogens, often exhibiting multidrug resistance. Analysis of KEGG modules revealed methicillin resistance in 25% of S. aureus strains and resistance to carbapenems in 21% of Enterobacter spp. strains. P. aeruginosa has a wide range of unique efflux systems. One hundred percent of the analyzed strains have at least two drug resistance systems, and 75% of the strains have seven. Each of the organisms has a characteristic set of metabolic features, whose impact on drug resistance can be considered in future studies. Comparing the genomes of nosocomial pathogens with each other and with Mycoplasma genomes can expand our understanding of the versatility of certain metabolic features and mechanisms of drug resistance.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The antibiotic resistance crisis: part 1: causes and threats.

          Decades after the first patients were treated with antibiotics, bacterial infections have again become a threat because of the rapid emergence of resistant bacteria-a crisis attributed to abuse of these medications and a lack of new drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Community-associated meticillin-resistant Staphylococcus aureus.

            Meticillin-resistant Staphylococcus aureus (MRSA) is endemic in hospitals worldwide, and causes substantial morbidity and mortality. Health-care-associated MRSA infections arise in individuals with predisposing risk factors, such as surgery or presence of an indwelling medical device. By contrast, many community-associated MRSA (CA-MRSA) infections arise in otherwise healthy individuals who do not have such risk factors. Additionally, CA-MRSA infections are epidemic in some countries. These features suggest that CA-MRSA strains are more virulent and transmissible than are traditional hospital-associated MRSA strains. The restricted treatment options for CA-MRSA infections compound the effect of enhanced virulence and transmission. Although progress has been made towards understanding emergence of CA-MRSA, virulence, and treatment of infections, our knowledge remains incomplete. Here we review the most up-to-date knowledge and provide a perspective for the future prophylaxis or new treatments for CA-MRSA infections. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative genomics: the bacterial pan-genome.

              Bacterial genome sequencing has become so easy and accessible that the genomes of multiple strains of more and more individual species have been and will be generated. These data sets provide for in depth analysis of intra-species diversity from various aspects. The pan-genome analysis, whereby the size of the gene repertoire accessible to any given species is characterized together with an estimate of the number of whole genome sequences required for proper analysis, is being increasingly applied. Different models exist for the analysis and their accuracy and applicability depend on the case at hand. Here we discuss current models and suggest a new model of broad applicability, including examples of its implementation.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 October 2020
                November 2020
                : 21
                : 21
                : 7839
                Affiliations
                [1 ]Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; mikha.shtol@ 123456gmail.com
                [2 ]Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
                Author notes
                Author information
                https://orcid.org/0000-0002-3962-1520
                Article
                ijms-21-07839
                10.3390/ijms21217839
                7660090
                33105850
                a8b7ddfa-b246-434d-a5d2-ff2deb5878a2
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 September 2020
                : 15 October 2020
                Categories
                Article

                Molecular biology
                kegg modules,kegg pathways,drug resistance,staphylococcus aureus,enterobacter spp.,pseudomonas aeruginosa,mycoplasma spp.

                Comments

                Comment on this article