106
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nuclear factor TDP-43 has been reported to play multiple roles in transcription, pre-mRNA splicing, mRNA stability and mRNA transport. From a structural point of view, TDP-43 is a member of the hnRNP protein family whose structure includes two RRM domains flanked by the N-terminus and C-terminal regions. Like many members of this family, the C-terminal region can interact with cellular factors and thus serve to modulate its function. Previously, we have described that TDP-43 binds to several members of the hnRNP A/B family through this region. In this work, we set up a coupled minigene/siRNA cellular system that allows us to obtain in vivo data to address the functional significance of TDP-43-recruited hnRNP complex formation. Using this method, we have finely mapped the interaction between TDP-43 and the hnRNP A2 protein to the region comprised between amino acid residues 321 and 366. Our results provide novel details of protein–protein interactions in splicing regulation. In addition, we provide further insight on TDP-43 functional properties, particularly the lack of effects, as seen with our assays, of the disease-associated mutations that fall within the TDP-43 321-366 region: Q331K, M337V and G348C.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Splicing regulation: from a parts list of regulatory elements to an integrated splicing code.

          Alternative splicing of pre-mRNAs is a major contributor to both proteomic diversity and control of gene expression levels. Splicing is tightly regulated in different tissues and developmental stages, and its disruption can lead to a wide range of human diseases. An important long-term goal in the splicing field is to determine a set of rules or "code" for splicing that will enable prediction of the splicing pattern of any primary transcript from its sequence. Outside of the core splice site motifs, the bulk of the information required for splicing is thought to be contained in exonic and intronic cis-regulatory elements that function by recruitment of sequence-specific RNA-binding protein factors that either activate or repress the use of adjacent splice sites. Here, we summarize the current state of knowledge of splicing cis-regulatory elements and their context-dependent effects on splicing, emphasizing recent global/genome-wide studies and open questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation.

            TAR DNA-binding protein 43 (TDP-43) is the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Although normal TDP-43 is a nuclear protein, pathological TDP-43 is redistributed and sequestered as insoluble aggregates in neuronal nuclei, perikarya, and neurites. Here we recapitulate these pathological phenotypes in cultured cells by altering endogenous TDP-43 nuclear trafficking and by expressing mutants with defective nuclear localization (TDP-43-DeltaNLS) or nuclear export signals (TDP-43-DeltaNES). Restricting endogenous cytoplasmic TDP-43 from entering the nucleus or preventing its exit out of the nucleus resulted in TDP-43 aggregate formation. TDP-43-DeltaNLS accumulates as insoluble cytoplasmic aggregates and sequesters endogenous TDP-43, thereby depleting normal nuclear TDP-43, whereas TDP-43-DeltaNES forms insoluble nuclear aggregates with endogenous TDP-43. Mutant forms of TDP-43 also replicate the biochemical profile of pathological TDP-43 in FTLD-U/ALS. Thus, FTLD-U/ALS pathogenesis may be linked mechanistically to deleterious perturbations of nuclear trafficking and solubility of TDP-43.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural determinants of the cellular localization and shuttling of TDP-43.

              TDP-43 (also known as TARDBP) regulates different processes of gene expression, including transcription and splicing, through RNA and DNA binding. Moreover, recent reports have shown that the protein interacts with the 3'UTRs of specific mRNAs. The aberrant cellular distribution and aggregation of TDP-43 were recently reported in neurodegenerative diseases, namely frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A detailed description of the determinants for cellular localization has yet to emerge, including information on how the known functions of TDP-43 and cellular targeting affect each other. We provide the first experimental evidence that TDP-43 continuously shuttles between nucleus and cytoplasm in a transcription-dependent manner. Furthermore, we investigate the role of the functional TDP-43 domains in determining cellular targeting through a combination of immunofluorescence and biochemical fractionation methods. Our analyses indicate that the C-terminus is essential for solubility and cellular localization, because its deletion results in the formation of large nuclear and cytoplasmic aggregates. Disruption of the RNA-recognition domain required for RNA and DNA binding, however, alters nuclear distribution by decreasing TDP-43 presence in the nucleoplasm. Our findings suggest that TDP-43 solubility and localization are particularly sensitive to disruptions that extend beyond the newly found nuclear localization signal and depend on a combination of factors that are closely connected to the functional properties of this protein.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                July 2009
                8 May 2009
                8 May 2009
                : 37
                : 12
                : 4116-4126
                Affiliations
                International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy
                Author notes
                *To whom correspondence should be addressed. Tel: +0039 040 3757337; Fax: +0039 040 3757361; Email: baralle@ 123456icgeb.org
                Article
                gkp342
                10.1093/nar/gkp342
                2709582
                19429692
                a8beb2d7-48f3-48d6-ab9b-0f95e957df90
                © 2009 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 November 2008
                : 20 April 2009
                : 21 April 2009
                Categories
                RNA

                Genetics
                Genetics

                Comments

                Comment on this article