114
views
0
recommends
+1 Recommend
0 collections
    9
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mortality predictors of Staphylococcus aureus bacteremia: a prospective multicenter study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Staphylococcus aureus is one of the causes of both community and healthcare-associated bacteremia. The attributable mortality of S. aureus bacteremia (SAB) is still higher and predictors for mortality and clinical outcomes of this condition are need to be clarified. In this prospective observational study, we aimed to examine the predictive factors for mortality in patients with SAB in eight Turkish tertiary care hospitals.

          Methods

          Adult patients with signs and symptoms of bacteremia with positive blood cultures for S. aureus were included. All data for episodes of SAB including demographics, clinical and laboratory findings, antibiotics, and outcome were recorded for a 3-year (2010–2012) period. Cox proportional hazard model with forward selection was used to assess the independent effect of risk factors on mortality. A 28-day mortality was the dependent variable in the Cox regression analysis.

          Results

          A total of 255 episodes of SAB were enrolled. The median age of the patients was 59 years. Fifty-five percent of the episodes were considered as primary SAB and vascular catheter was the source of 42.1 %. Healthcare associated SAB was defined in 55.7 %. Blood cultures yielded methicillin-resistant S. aureus (MRSA) as a cause of SAB in 39.2 %. Initial empirical therapy was inappropriate in 28.2 %. Although overall mortality was observed in 52 (20.4 %), 28-day mortality rate was 15.3 %. Both the numbers of initial inappropriate empirical antibiotic treatment and the median hours to start an appropriate antibiotic between the cases of fatal outcome and survivors after fever onset were found to be similar (12/39 vs 60/216 and 6 vs 12 h, respectively; p > 0.05). High Charlson comorbidity index (CCI) score (p = 0.002), MRSA (p = 0.017), intensive care unit (ICU) admission (p < 0.001) and prior exposure to antibiotics (p = 0.002) all were significantly associated with mortality. The Cox analysis defined age [Hazard Ratio (HR) 1.03; p = 0.023], ICU admission (HR 6.9; p = 0.002), and high CCI score (HR 1.32; p = 0.002) as the independent predictive factors mortality.

          Conclusions

          The results of this prospective study showed that age, ICU stay and high CCI score of a patient were the independent predictors of mortality and MRSA was also significantly associated with mortality in SAB.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Invasive methicillin-resistant Staphylococcus aureus infections in the United States.

          As the epidemiology of infections with methicillin-resistant Staphylococcus aureus (MRSA) changes, accurate information on the scope and magnitude of MRSA infections in the US population is needed. To describe the incidence and distribution of invasive MRSA disease in 9 US communities and to estimate the burden of invasive MRSA infections in the United States in 2005. Active, population-based surveillance for invasive MRSA in 9 sites participating in the Active Bacterial Core surveillance (ABCs)/Emerging Infections Program Network from July 2004 through December 2005. Reports of MRSA were investigated and classified as either health care-associated (either hospital-onset or community-onset) or community-associated (patients without established health care risk factors for MRSA). Incidence rates and estimated number of invasive MRSA infections and in-hospital deaths among patients with MRSA in the United States in 2005; interval estimates of incidence excluding 1 site that appeared to be an outlier with the highest incidence; molecular characterization of infecting strains. There were 8987 observed cases of invasive MRSA reported during the surveillance period. Most MRSA infections were health care-associated: 5250 (58.4%) were community-onset infections, 2389 (26.6%) were hospital-onset infections; 1234 (13.7%) were community-associated infections, and 114 (1.3%) could not be classified. In 2005, the standardized incidence rate of invasive MRSA was 31.8 per 100,000 (interval estimate, 24.4-35.2). Incidence rates were highest among persons 65 years and older (127.7 per 100,000; interval estimate, 92.6-156.9), blacks (66.5 per 100,000; interval estimate, 43.5-63.1), and males (37.5 per 100,000; interval estimate, 26.8-39.5). There were 1598 in-hospital deaths among patients with MRSA infection during the surveillance period. In 2005, the standardized mortality rate was 6.3 per 100,000 (interval estimate, 3.3-7.5). Molecular testing identified strains historically associated with community-associated disease outbreaks recovered from cultures in both hospital-onset and community-onset health care-associated infections in all surveillance areas. Invasive MRSA infection affects certain populations disproportionately. It is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

            Objective To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004. Design Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. Methods We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation [1] indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations [2] indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. Results Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7–10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure ≥ 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7–9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). Conclusion There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis.

              A meta-analysis was performed to summarize the impact of methicillin-resistance on mortality in Staphylococcus aureus bacteremia. A search of the MEDLINE database for studies published during the period of 1 January 1980 through 31 December 2000 and a bibliographic review identified English-language studies of S. aureus bacteremia. Studies were included if they contained the numbers of and mortality rates for patients with methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) bacteremia. Data were extracted on demographic characteristics of the patients, adjustment for severity and comorbid illness, source of bacteremia, and crude and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for in-hospital mortality. When the results were pooled with a random-effects model, a significant increase in mortality associated with MRSA bacteremia was evident (OR, 1.93; 95% CI, 1.54-2.42; P<.001); significant heterogeneity was present. We explored the reasons for heterogeneity by means of subgroup analyses. MRSA bacteremia is associated with significantly higher mortality rate than is MSSA bacteremia.
                Bookmark

                Author and article information

                Contributors
                (90) 212-460-7796 , myilmaz@medipol.edu.tr , mesutmd@hotmail.com
                nelaldi61@yahoo.com
                ilkerinancbalkan@hotmail.com
                farslan@medipol.edu.tr
                aysebatirel@yahoo.com
                zbakici@cumhuriyet.edu.tr
                mggozel@cumhuriyet.edu.tr
                s-ewil@hotmail.com
                adogancelik@yahoo.com.tr
                arzumyetkin@yahoo.com
                hurrembodur@gmail.com
                melda@uludag.edu.tr
                halisakalin@gmail.com
                aybalaaltay@hotmail.com
                isencanibu@yahoo.com
                emelazak@mynet.com
                sgundes@yahoo.com
                bceylan@medipol.edu.tr
                drrozturk@gmail.com
                hakanomu@omu.edu.tr
                vahabo@hotmail.com
                alimert@medipol.edu.tr
                Journal
                Ann Clin Microbiol Antimicrob
                Ann. Clin. Microbiol. Antimicrob
                Annals of Clinical Microbiology and Antimicrobials
                BioMed Central (London )
                1476-0711
                9 February 2016
                9 February 2016
                2016
                : 15
                : 7
                Affiliations
                [ ]Department of Infectious Diseases and Clinical Microbiology, Istanbul Medipol University, TEM Avrupa Otoyolu Göztepe Çıkışı No: 1, Bağcılar, 34214 İstanbul, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
                [ ]Department of Medical Microbiology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Dr. Lütfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Trakya University, Edirne, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Ankara Numune Training and Research Hospital, Ankara, Turkey
                [ ]Department of Medical Microbiology, Faculty of Medicine, Uludag University, Bursa, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Uludag University, Bursa, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Ondokuz Mayis University, Samsun, Turkey
                [ ]Department of Infectious Diseases and Clinical Microbiology, Istanbul Medeniyet University, Istanbul, Turkey
                Author information
                http://orcid.org/0000-0001-8022-7325
                Article
                122
                10.1186/s12941-016-0122-8
                4748515
                26860463
                a8cbabbd-6874-49f1-ba90-ad13be7ea9d1
                © Yilmaz et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 December 2015
                : 1 February 2016
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Infectious disease & Microbiology
                staphylococcus aureus,bacteremia,risk factors,mortality,sepsis
                Infectious disease & Microbiology
                staphylococcus aureus, bacteremia, risk factors, mortality, sepsis

                Comments

                Comment on this article