9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ectopic expression of the CRF-binding protein: minor impact on HPA axis regulation but induction of sexually dimorphic weight gain.

      Journal of Neuroendocrinology
      Adrenal Glands, physiology, Adrenocorticotropic Hormone, secretion, Animals, Carrier Proteins, genetics, Corticosterone, Female, Gene Expression, Hypothalamo-Hypophyseal System, Lipopolysaccharides, pharmacology, Male, Mice, Mice, Transgenic, Organ Specificity, Polymerase Chain Reaction, RNA-Directed DNA Polymerase, Sex Characteristics, Weight Gain

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corticotrophin-releasing factor (CRF) and urocortin possess a high-affinity binding protein. Although the CRF binding protein (BP) can sequester these ligands and inhibit their activity, the endogenous activity of this protein is not understood. Therefore, transgenic mouse lines that over-express the CRF-BP were created. The transgene was constructed by ligating rat CRF-BP cDNA (1.1 kb) between a mouse metallothionein-I promoter (1.8 kb) and a nonfunctional human growth hormone gene sequence (2.1 kb) in a modified pBR322 plasmid and microinjecting the transgene into C57BL/6 x SJL hybrid ova. The transgene was expressed in 50% in both male and female progeny. All transgenic lines were maintained by crossing transgenic animals with wild-type C57BL/6 mates. Reverse-transcriptase (RT) PCR of the CRF-BP transgene showed that it is widely expressed not only in the brain and pituitary, but also peripheral tissues including the liver, kidney and spleen. Transgenic animals of both sexes showed significant increases in weight gain as established by analysis of variance; however, the weight gain profiles for each sex were distinct. High levels of circulating CRF-BP were detected in the transgenic animals, but the basal ACTH and corticosterone levels were not significantly decreased compared to wild-type littermates. The hypothalamopituitary-adrenal (HPA) axis was stimulated by systemic inflammation induced with lipopolysaccharide (LPS). An expected increase in transgene expression was observed and was accompanied by a significant attenuation of ACTH secretion at 3 h after LPS injection in the transgenic males but not the females. These data suggest that HPA axis regulation is significantly affected only with very high circulating levels of CRF-BP. Moreover, this work supports previous studies that implicate CRF and urocortin in the regulation of appetite and the binding protein expression may play a sexually dimorphic role in regulating this and other responses.

          Related collections

          Author and article information

          Comments

          Comment on this article