8
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parkinson's Disease in the Era of a Novel Respiratory Virus Pandemic

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Humankind has gone through major airborne virus pandemics in the modern era. Coronavirus outbreaks have been registered in 2003 [severe acute respiratory syndrome (SARS)], 2009 [Middle East respiratory syndrome (MERS)], and 2019/2020 ongoing [CoV disease (COVID-19)]. Influenza outbreaks were documented in 1918 (post-World War I Spanish flu, H1N1 virus), 1957–1958 (Asian flu, H2N2 virus), 1968 (the Hong Kong flu, H3N2 virus), and 2009 (the swine flu, H1N1 virus). These viruses can only affect humans after mutating in their usual animal hosts, presenting as a zoonotic disease in the beginning. Unknown to the human immune system, they spread swiftly, resulting in outbreaks. Fatality rates vary from >30% for MERS, ~10% for the 1918 Spanish flu, 10% for SARS to <1% for the 2009 MERS. The number of infected people was 700 or 500 million with 2009's or 1918's H1N1 virus, respectively, 8,000 with SARS-CoV-1, and 2,500 with MERS-CoV. As of June 29th, according to the World Health Organization's daily situation report no. 161, SARS-CoV-2 has infected 10 million people, with a 4.98% case fatality rate (https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports). Coronavirus (CoV) and influenza virus (IV) are neurotropic (1, 2). Experimental studies using transgenic mice showed that SARS- and MERS-CoV intranasal administration was followed by the invasion of the olfactory neuroepithelium and, ultimately, of the brain (2). Coronavirus could also access the central nervous system by transsynaptic transfer, starting at peripheral nerve endings (2). At later stages, invasion via the bloodstream likely involves angiotensin-converting enzyme 2 (ACE2) receptors (1). A schematic representation can be found in Figure 1. Noteworthy, the brainstem shows the highest level of viral particles. Impairment of the cardiorespiratory nuclei, the nucleus ambiguous and the nucleus of the solitary tract, in particular, may contribute to respiratory distress (2). Figure 1 Schematic representation of the most likely routes to neural invasion by SARS-CoV-2. Left: orange depicts the olfactory neuroepithelium route; blue depicts the bloodstream route after lung invasion (reproduced from https://sq.wikipedia.org/wiki/Lemza). Right: red circles indicate brain areas with the highest SARS-CoV titers (figure kindly provided by the Servier Medical Art Department). All figures are reproduced under a CC BY-SA license. It does not surprise that patients develop a variety of neurological symptoms (1). Indeed, SARS-CoV-2 is likely to infect the central nervous system early in the disease's course (2). Results from a large survey involving 2,343 European neurologists revealed headache (61.9%), myalgia (50.4%), anosmia (49.2%), ageusia (39.8%), impaired consciousness (29.3%), and psychomotor agitation (26.7%) as the most frequent neurological findings (3). In a recent experiment, viral replication within neurons soon after infection by SARS-CoV-2 in a human-induced pluripotent stem cell (iPSC)-derived BrainSphere model (4), supporting virus neurotropism. The neural consequences of viral infection were further tested in 47 patients with mild (n = 20), moderate (n = 9), or severe (n = 18) COVID-19, which were compared to 33 controls (5). Plasma levels of neurofilament light chain protein, a marker of neuronal injury, and glial fibrillary acidic protein, a marker of astrocyte damage, were higher in moderately or severely affected patients. Interestingly, astrocyte damage appeared to precede neuronal death. These findings suggest that brain injury may be more common than previously thought. COVID-19 should be viewed as a multisystemic disease, the involvement of the nervous system being noteworthy. Acute disseminated encephalomyelitis has been observed after SARS-CoV-2 infection in a patient without prominent clinical pulmonary symptoms (6). Some patients with COVID-19 have developed Guillain–Barré syndrome (7). These findings suggest that neuronal damage may concern not only the olfactory system and brainstem nuclei, as was initially suggested (8). Olfactory loss may be the earliest neurological sign in COVID-19. One study conducted during the early pandemic in Italy showed that 13.5% of a small sample of patients with COVID-19 had developed hyposmia (9). A later study found olfactory dysfunction in 85.6% of 417 mild-to-moderate COVID-19 patients recruited from 12 European hospitals (10). A recent systematic review of 10 studies including 1,627 patients reported a 52.73% (95% CI, 29.64–75.23%) hyposmia prevalence in COVID-19 patients (11). Interestingly, hyposmia may precede other COVID-19 symptoms in a large number of cases (10), highlighting the earliness in brain tissue invasion and the relevance of its awareness. The long-term consequences of coronavirus infections may be serious, as suggested by the observation that certain CoV strains are linked to neurodegenerative changes resulting in multiple sclerosis (1). The first observations date back to the 1980s. More recent studies have identified CoV-OC43, which shows serological cross-reactivity with SARS-CoV (12), more often in brain tissue of multiple sclerosis patients than that in control subjects (1). Both direct and indirect pathophysiological mechanisms have been proposed (13). Cross-reactivity between viral antigens and myelin may be a key mechanism (13). Febrile or afebrile seizures, myelitis, meningitis, encephalitis, Guillain–Barré syndrome, and depression are among the manifestations observed upon IV infection. It is noteworthy that brain disease can develop even in the absence of respiratory symptoms (1). Seasonal IV infection can also lead to neurological complications. One study reported neurological alterations in 21 patients of a wide range of age, observing encephalitis as the most frequent clinical sign (1). Fifty percent of them showed neurological sequelae, sometimes including parkinsonism. Neuroinflammation after the activation of the microglia and other immune cells promotes neuronal death and protein aggregation (1), which may favor neurodegenerative diseases development in due course, as below discussed further. Parkinson's disease (PD) affects nearly 6.1 million people globally. Our understanding of the pathophysiology of the disease has radically changed in recent decades. We now believe that PD is an umbrella disorder encompassing many genetic–molecular entities affecting many systems, resulting in a broad spectrum of motor and nonmotor features (14). The main histological finding is the presence of intracellular Lewy bodies composed of misfolded α-synuclein protein aggregates (14). Neuroinflammation, apoptosis, mitochondrial dysfunction, altered calcium homeostasis, inadequate protein degradation, and synaptic pathobiology have been cited as mechanisms resulting in either cell death and α-synuclein deposition or both (14). Infections may play a role in PD development. A recent meta-analysis has shown that individuals with ongoing infections had a 20% higher PD risk compared with controls (15). Interestingly, IV infection was identified as one event that increased the risk of PD (15). According to a recent theory, PD onset may be triggered by exposure to air pollutants, pesticides, heavy metals, head trauma, gastrointestinal microbiota perturbations, and pathogens (16) like the airborne viruses already discussed. The correlation between the routes of viral brain invasion and the findings of Braak and colleagues further supports this hypothesis. According to these authors, Lewy bodies can be first found at the brainstem and the olfactory cortex, long before damage to the substantia nigra results in the typical motor symptoms (17). As discussed earlier, viruses may reach the brainstem via a transsynaptic route and the olfactory cortex via the olfactory neuroepithelium (1, 2). While PD development requires not only triggers but also facilitators and aggravators (16), these pieces of evidence reinforce the potential connection with an airborne viral infection. So far, a potential triggering effect of CoV infection has not been reported. Notwithstanding, the above-discussed data support this idea. What way viral infection may lead to developing a neurodegenerative disease is unclear. A local immune response leading to neuroinflammation is a likely candidate (13). Recent data show that α-synuclein may participate in the immune response, and infections may induce its upregulation (16). In turn, this molecule may activate microglia (18). Inflammatory cytokines and chemokines produced by microglia cells would amplify the inflammatory response (19), leading to neuronal death (20). In addition, neuroimmune responses to infection may lead to glutamate excitotoxicity (13), linked to neuronal degeneration (14). The extent to which the novel SARS-CoV-2 respiratory virus pandemic is implicated in PD development should not be overlooked. This novel virus may infect millions of people, many likely being ever unaware. As said, central nervous system infection may occur in the absence of other symptoms (2). Noteworthy, smell alteration is being retrospectively recalled as an early symptom prodromal to later respiratory distress by infected people developing COVID-19 (9). In these cases, even if the immune system can control the infection and prevent an overt disease, the triggering of PD may have already taken place. Here again, smell alteration is early recalled by PD patients, as manifesting even years before PD diagnosis (14). The triggering effects may escalate upon repetitive exposure to the virus over the lifespan. Even if such effects are mild or moderate, the number of people exposed, reaching several million, suggests that the implications on PD should not be overlooked. In sum, infection with CoV or IV respiratory viruses may increase the risk of developing PD over a lifetime. Pandemics of respiratory viruses appear a hallmark of the modern era and may be expected to reappear over time, according to experts. Besides the death toll, these pandemics may contribute to an increased worldwide burden of PD, which may only become noticeable many decades after the outbreaks. Health systems should be ready to tackle an eventual increase in PD burden. Notwithstanding, the infected population at risk for developing PD is an interesting target for testing disease-modifying or neuroprotective treatments. Author Contributions All authors contributed to the article and approved the submitted version. Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found

          The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients

          Abstract Following the severe acute respiratory syndrome coronavirus (SARS‐CoV) and Middle East respiratory syndrome coronavirus (MERS‐CoV), another highly pathogenic coronavirus named SARS‐CoV‐2 (previously known as 2019‐nCoV) emerged in December 2019 in Wuhan, China, and rapidly spreads around the world. This virus shares highly homological sequence with SARS‐CoV, and causes acute, highly lethal pneumonia coronavirus disease 2019 (COVID‐19) with clinical symptoms similar to those reported for SARS‐CoV and MERS‐CoV. The most characteristic symptom of patients with COVID‐19 is respiratory distress, and most of the patients admitted to the intensive care could not breathe spontaneously. Additionally, some patients with COVID‐19 also showed neurologic signs, such as headache, nausea, and vomiting. Increasing evidence shows that coronaviruses are not always confined to the respiratory tract and that they may also invade the central nervous system inducing neurological diseases. The infection of SARS‐CoV has been reported in the brains from both patients and experimental animals, where the brainstem was heavily infected. Furthermore, some coronaviruses have been demonstrated able to spread via a synapse‐connected route to the medullary cardiorespiratory center from the mechanoreceptors and chemoreceptors in the lung and lower respiratory airways. Considering the high similarity between SARS‐CoV and SARS‐CoV2, it remains to make clear whether the potential invasion of SARS‐CoV2 is partially responsible for the acute respiratory failure of patients with COVID‐19. Awareness of this may have a guiding significance for the prevention and treatment of the SARS‐CoV‐2‐induced respiratory failure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study

            To the Editor—We read with interest the article by Wang et al [1] describing the clinical features of 69 patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Wuhan, China. The authors provide a detailed description of major signs and symptoms of overt disease [2, 3], but fail to give an account of minor symptoms that may be present at earlier stages of the infection. After some patients admitted for coronavirus disease 2019 (COVID-19) at the Infectious Disease Department of L. Sacco Hospital in Milan, Italy, complained of olfactory and taste disorders (OTDs), we performed a cross-sectional survey of the prevalence of these alterations in the context of SARS-CoV-2 infection. On 19 March 2020, a simple questionnaire including questions about the presence or absence of OTDs, their type and time of onset respective to hospitalization were submitted through verbal interview to all SARS-CoV-2–positive hospitalized patients who were able to give informed consent. Of 88 hospitalized patients, 59 were able to be interviewed (29 were nonrespondents, of whom 4 had dementia, 2 had a linguistic barrier, and 23 were on noninvasive ventilation) (Table 1). Of these, 20 (33.9%) reported at least 1 taste or olfactory disorder and 11 (18.6%) both. Twelve patients (20.3%) presented the symptoms before the hospital admission, whereas 8 (13.5%) experienced the symptoms during the hospital stay. Taste alterations were more frequently (91%) before hospitalization, whereas after hospitalization taste and olfactory alteration appeared with equal frequency. Females reported OTDs more frequently than males (10/19 [52.6%] vs 10/40 [25%]; P = .036). Moreover, patients with at least 1 OTD were younger than those without (median, 56 years [interquartile range {IQR}, 47–60] vs 66 [IQR, 52–77]; P = .035). All patients reported the persistence of OTDs at the time of the interview. Table 1. Characteristics of Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection Assessed for Taste and Olfactory Disorders (N = 59) Patients No. (%) Age, y, median (IQR) 60 (50–74) Male sex 40 (67.8) Days from illness onset to hospital admission, median (IQR) 6 (4–10) Days from illness onset to the interview, median (IQR) 15 (10–21) Pneumonia at hospital admission 43 (72.8) Symptoms at hospital admission  Fever 43 (72.8)  Cough 22 (37.3)  Dyspnea 15 (25.4)  Sore throat 1 (1.7)  Arthralgia 3 (5.1)  Coryza 1 (1.7)  Headache 2 (3.4)  Asthenia 1 (1.7)  Abdominal symptoms 5 (8.5) No taste or olfactory disorders 39 (66.1) With olfactory and/or taste disorders 20 (33.9) Taste disorders only  Dysgeusia 5 (8.5)  Ageusia 1 (1.7) Olfactory disorders only  Hyposmia 3 (5.1)  Anosmia 0 (0) Mixed taste and olfactory disorders  Dysgeusia and hyposmia 2 (3.4)  Dysgeusia and anosmia 2 (3.4)  Ageusia and hyposmia 2 (3.4)  Ageusia and anosmia 5 (8.5) Data are presented as no. (%) unless otherwise indicated. Abbreviations: IQR, interquartile range; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. Olfactory and taste disorders are well known to be related with a wide range of viral infections [4, 5]. SARS-CoV has demonstrated in a mice model a transneural penetration through the olfactory bulb [6]. Moreover, angiotensin-converting enzyme 2 receptor, which is used by SARS-CoV-2 to bind and penetrate into the cell, is widely expressed on the epithelial cells of the mucosa of the oral cavity [7]. These findings could explain the underlying pathogenetic mechanism of taste and olfactory disorders in SARS-CoV-2 infection. Due to limitations related to the diffusivity of the disease and emergency contingencies, it was impossible to perform a more structured questionnaire associated with validated tests (ie, Pennsylvania smell identification test) [8]. However, our survey shows that OTDs are fairly frequent in patients with SARS-CoV-2 infection and may precede the onset of full-blown clinical disease. In a pandemic context, further investigations on nonhospitalized infected patients are required to ascertain if these symptoms, albeit unspecific, may represent a clinical screening tool to orientate testing of pauci-symptomatic individuals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System?

              Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                11 September 2020
                2020
                11 September 2020
                : 11
                : 995
                Affiliations
                [1] 1Biomedical Research Center, Interamerican Open University (CAECIHS-UAI), National Research Council (CONICET) , Buenos Aires, Argentina
                [2] 2Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA) , Buenos Aires, Argentina
                [3] 3Instituto Universitario de Ciencias de la Salud, Fundación H.A Barceló , Buenos Aires, Argentina
                [4] 4Department of Biology, John F. Kennedy University , Buenos Aires, Argentina
                [5] 5Facultad de Medicina, Universidad Autónoma de Chile , Santiago, Chile
                [6] 6Faculty of Medical Sciences, Pontificia Universidad Católica Argentina , Buenos Aires, Argentina
                Author notes

                Edited by: Maria Fiorella Contarino, Leiden University Medical Center, Netherlands

                Reviewed by: Philip Wade Tipton, Mayo Clinic Florida, United States; Antonella Macerollo, University College London, United Kingdom

                *Correspondence: Santiago Perez-Lloret santiagopl@ 123456conicet.gov.ar

                This article was submitted to Movement Disorders, a section of the journal Frontiers in Neurology

                †These authors share first authorship

                Article
                10.3389/fneur.2020.00995
                7516057
                a8d1d48a-836d-4a03-b3dd-0bbf25a4069b
                Copyright © 2020 Otero-Losada, Kobiec, Udovin, Chevalier, Quarracino, Menéndez Maissonave, Bordet, Capani and Perez-Lloret.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 May 2020
                : 29 July 2020
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 20, Pages: 4, Words: 2492
                Categories
                Neurology
                Opinion

                Neurology
                parkinson's disease,covid 19,viral infection,influenaza virus,neurological impact,sars-cov-2,coronavirus,neurological diseases

                Comments

                Comment on this article