17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Best practices for the design, laboratory analysis, and reporting of trials involving fatty acids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Fatty acids are among the most studied nutrients in human metabolism and health. Endogenous fatty acid status influences health and disease via multiple mechanisms at all stages of the life cycle. Despite widespread interest, attempts to summarize the results of multiple studies addressing similar fatty acid–related outcomes via meta-analyses and systematic reviews have been disappointing, largely because of heterogeneity in study design, sampling, and laboratory and data analyses. Our purpose is to recommend best practices for fatty acid clinical nutrition and medical studies. Key issues in study design include judicious choice of sampled endogenous pools for fatty acid analysis, considering relevant physiologic state, duration of intervention and/or observation, consideration of specific fatty acid dynamics to link intake and endogenous concentrations, and interpretation of results with respect to known fatty acid ranges. Key laboratory considerations include proper sample storage, use of sample preparation methods known to be fit-for-purpose via published validation studies, detailed reporting or methods to establish proper fatty acid identification, and quantitative analysis, including calibration of differential response, quality control procedures, and reporting of data on a minimal set of fatty acids to enable comprehensive interpretation. We present a checklist of recommendations for fatty acid best practices to facilitate design, review, and evaluation of studies with the intention of improving study reproducibility.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid method of total lipid extraction and purification.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study.

            Tissue levels of n-3 fatty acids reflect dietary intake, but quantitative data about rate of incorporation and levels as a function of intake are scarce. We fed 58 men 0, 3, 6, or 9 g/d of fish oil for 12 months and monitored fatty acids in serum cholesteryl esters, erythrocytes, and subcutaneous fat during and after supplementation. Eicosapentaenoic acid (EPA) in cholesteryl esters plateaued after 4-8 weeks; the incorporation half-life was 4.8 days. Steady-state levels increased by 3.9 +/- 0.3 mass % points (+/- SE) for each extra gram of EPA eaten per day. Incorporation of docosahexaenoic acid (DHA) was erratic; plateau values were 1.1 +/- 0.1 mass % higher for every g/d ingested. Incorporation of EPA into erythrocyte membranes showed a half-life of 28 days; a steady state was reached after 180 days. Each g/d increased levels by 2.1 +/- 0.1 mass %. C22:5n-3 levels increased markedly. Changes in DHA were erratic and smaller. EPA levels in adipose tissue rose also; the change after 6 months was 67% of that after 12 months in gluteal and 75% in abdominal fat. After 12 months each gram per day caused an 0.11 +/- 0.01 mass % rise in gluteal fat for EPA, 0.53 +/- 0.07 for C22:5n-3, and 0.14 +/- 0.03 for DHA. Thus, different (n-3) fatty acids were incorporated with different efficiencies, possibly because of interconversions or different affinities of the enzymatic pathways involved. EPA levels in cholesteryl esters reflect intake over the past week or two, erythrocytes over the past month or two, and adipose tissue over a period of years. These findings may help in assessing the intake of (n-3) fatty acids in epidemiological studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fatty acid composition of human brain phospholipids during normal development.

              The fatty acid composition of phosphatidylethanolamine (PE), ethanolamine plasmalogens (EPs), phosphatidylserine (PS), phosphatidylcholine (PC), and sphingomyelin was studied in 22 human forebrains, ranging in age from 26 prenatal weeks to 8 postnatal years. Phospholipids were separated by two-dimensional TLC, and the fatty acid methyl esters studied by capillary column GLC. Docosahexaenoic acid (22:6n-3) increased with age in PE and PC, whereas arachidonic acid (20:4n-6) remained quite constant. In EP, 22:6n-3 increased less markedly than 20:4n-6, adrenic (22:4n-6) and oleic (18:1n-9) acids being the predominant fatty acids during postnatal age. In PS, 18:1n-9 increased dramatically throughout development, and 20:4n-6 and 22:4n-6 increased only until approximately 6 months of age. Although 22:6n-3 kept quite constant during development in PS, its percentage decreased due to the accretion of other polyunsaturated fatty acids (PUFAs). As a characteristic myelin lipid, sphingomyelin was mainly constituted by very long chain saturated and monounsaturated fatty acids. Among them, nervonic acid (24:1n-9) was the major very long chain fatty acid in Sp, followed by 24:0, 26:1n-9, and 26:0, and its accretion after birth was dramatic. As myelination advanced, 18:1n-9 increased markedly in all four glycerophospholipids, predominating in EP, PS, and PC. In contrast, 22:6n-3 was the most important PUFA in PE in the mature forebrain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Am J Clin Nutr
                Am. J. Clin. Nutr
                ajcn
                The American Journal of Clinical Nutrition
                Oxford University Press
                0002-9165
                1938-3207
                August 2018
                21 June 2018
                21 June 2018
                : 108
                : 2
                : 211-227
                Affiliations
                [1 ]Dell Pediatric Research Institute, Departments of Pediatrics, Nutrition, and Chemistry, University of Texas at Austin, Austin, TX
                [2 ]Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, NY
                [3 ]Research Center on Aging, Department of Medicine, Université de Sherbrooke, Sherbrooke, Canada
                [4 ]Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
                [5 ]Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada
                [6 ]Division of Intramural Clinical and Biological Research, NIAAA, NIH, Bethesda, MD
                Author notes
                Address correspondence to JTB (e-mail: tbrenna@ 123456utexas.edu ).
                Article
                nqy089
                10.1093/ajcn/nqy089
                6084616
                29931035
                a8de049f-5e19-4700-b399-5eede5c67eed
                © The Author(s) 2018. Published by Oxford University Press on behalf of the American Society for Nutrition.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 12 January 2018
                : 09 April 2018
                Page count
                Pages: 17
                Categories
                Narrative Review

                Nutrition & Dietetics
                meta-analysis,systematic review,experimental design,protocol,placebo,sample preparation,gas chromatography,fatty acid methyl esters,response factors

                Comments

                Comment on this article